Real Part of Twisted-by-Grading Spectral Triples
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

After a brief review on the applications of twisted spectral triples to physics, we adapt to the twisted case the notion of real part of a spectral triple. In particular, when one twists a usual spectral triple by its grading, we show that – depending on the $KO$ dimension – the real part is either twisted as well, or is the intersection of the initial algebra with its opposite. We illustrate this result with the spectral triple of the standard model.
Keywords: noncommutative geometry, twisted spectral triple, standard model.
@article{SIGMA_2020_16_a108,
     author = {Manuele Filaci and Pierre Martinetti},
     title = {Real {Part} of {Twisted-by-Grading} {Spectral} {Triples}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a108/}
}
TY  - JOUR
AU  - Manuele Filaci
AU  - Pierre Martinetti
TI  - Real Part of Twisted-by-Grading Spectral Triples
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a108/
LA  - en
ID  - SIGMA_2020_16_a108
ER  - 
%0 Journal Article
%A Manuele Filaci
%A Pierre Martinetti
%T Real Part of Twisted-by-Grading Spectral Triples
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a108/
%G en
%F SIGMA_2020_16_a108
Manuele Filaci; Pierre Martinetti. Real Part of Twisted-by-Grading Spectral Triples. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a108/

[1] Boyle L., Farnsworth S., “The standard model, the Pati–Salam model, and ‘Jordan geometry’”, New J. Phys., 22 (2020), 073023, 11 pp., arXiv: 1910.11888 | DOI | MR

[2] Brzeziński T., Ciccoli N., Da̧browski L., Sitarz A., “Twisted reality condition for Dirac operators”, Math. Phys. Anal. Geom., 19 (2016), 16, 11 pp., arXiv: 1601.07404 | DOI | MR | Zbl

[3] Brzeziński T., Da̧browski L., Sitarz A., “On twisted reality conditions”, Lett. Math. Phys., 109 (2019), 643–659, arXiv: 1804.07005 | DOI | MR | Zbl

[4] Chamseddine A. H., Connes A., “Conceptual explanation for the algebra in the noncommutative approach to the standard model”, Phys. Rev. Lett., 99 (2007), 191601, 4 pp., arXiv: 0706.3690 | DOI | MR | Zbl

[5] Chamseddine A. H., Connes A., “Why the standard model”, J. Geom. Phys., 58 (2008), 38–47, arXiv: 0706.3688 | DOI | MR | Zbl

[6] Chamseddine A. H., Connes A., “Resilience of the spectral standard model”, J. High Energy Phys., 2012:9 (2012), 104, 11 pp., arXiv: 1208.1030 | DOI | MR | Zbl

[7] Chamseddine A. H., Connes A., Marcolli M., “Gravity and the standard model with neutrino mixing”, Adv. Theor. Math. Phys., 11 (2007), 991–1089, arXiv: hep-th/0610241 | DOI | MR | Zbl

[8] Chamseddine A. H., Connes A., van Suijlekom W. D., “Beyond the spectral standard model: emergence of Pati–Salam unification”, J. High Energy Phys., 2013:11 (2013), 132, 36 pp., arXiv: 1304.8050 | DOI | Zbl

[9] Chamseddine A. H., Connes A., van Suijlekom W. D., “Inner fluctuations in noncommutative geometry without the first order condition”, J. Geom. Phys., 73 (2013), 222–234, arXiv: 1304.7583 | DOI | MR | Zbl

[10] Chamseddine A. H., van Suijlekom W. D., “A survey of spectral models of gravity coupled to matter”, Advances in Noncommutative Geometry, eds. A. Chamseddine, C. Consani, N. Higson, M. Khalkhali, H. Moscovici, G. Yu, Springer, Cham, 2019, 1–51, arXiv: 1904.12392 | DOI | Zbl

[11] Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994 | MR | Zbl

[12] Connes A., Marcolli M., Noncommutative geometry, quantum fields and motives, American Mathematical Society Colloquium Publications, 55, Amer. Math. Soc., Providence, RI, 2008 | DOI | MR | Zbl

[13] Connes A., Moscovici H., “Type III and spectral triples”, Traces in Number Theory, Geometry and Quantum Fields, Aspects Math., E38, Friedr. Vieweg, Wiesbaden, 2008, 57–71, arXiv: math.OA/0609703 | MR

[14] Devastato A., Farnsworth S., Lizzi F., Martinetti P., “Lorentz signature and twisted spectral triples”, J. High Energy Phys., 2018:3 (2018), 089, 21 pp., arXiv: 1710.04965 | DOI | MR

[15] Devastato A., Lizzi F., Martinetti P., “Grand symmetry, spectral action and the Higgs mass”, J. High Energy Phys., 2014:1 (2014), 042, 29 pp., arXiv: 1304.0415 | DOI

[16] Devastato A., Martinetti P., “Twisted spectral triple for the standard model and spontaneous breaking of the grand symmetry”, Math. Phys. Anal. Geom., 20 (2017), 2, 43 pp., arXiv: 1411.1320 | DOI | MR | Zbl

[17] Filaci M., Martinetti P., Minimal twist of almost commutative geometries, in preparation

[18] Filaci M., Martinetti P., Pesco S., Twisted standard model in noncommutative geometry I: the field content, arXiv: 2008.01629

[19] Landi G., Martinetti P., “On twisting real spectral triples by algebra automorphisms”, Lett. Math. Phys., 106 (2016), 1499–1530, arXiv: 1601.00219 | DOI | MR | Zbl

[20] Landi G., Martinetti P., “Gauge transformations for twisted spectral triples”, Lett. Math. Phys., 108 (2018), 2589–2626, arXiv: 1704.06212 | DOI | MR | Zbl