Quasi-Invariants in Characteristic $p$ and Twisted Quasi-Invariants
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The spaces of quasi-invariant polynomials were introduced by Chalykh and Veselov [Comm. Math. Phys. 126 (1990), 597–611]. Their Hilbert series over fields of characteristic 0 were computed by Feigin and Veselov [Int. Math. Res. Not. 2002 (2002), 521–545]. In this paper, we show some partial results and make two conjectures on the Hilbert series of these spaces over fields of positive characteristic. On the other hand, Braverman, Etingof and Finkelberg [arXiv:1611.10216] introduced the spaces of quasi-invariant polynomials twisted by a monomial. We extend some of their results to the spaces twisted by a smooth function.
Keywords: twisted quasi-invariants.
Mots-clés : quasi-invariant polynomials
@article{SIGMA_2020_16_a106,
     author = {Michael Ren and Xiaomeng Xu},
     title = {Quasi-Invariants in {Characteristic} $p$ and {Twisted} {Quasi-Invariants}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a106/}
}
TY  - JOUR
AU  - Michael Ren
AU  - Xiaomeng Xu
TI  - Quasi-Invariants in Characteristic $p$ and Twisted Quasi-Invariants
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a106/
LA  - en
ID  - SIGMA_2020_16_a106
ER  - 
%0 Journal Article
%A Michael Ren
%A Xiaomeng Xu
%T Quasi-Invariants in Characteristic $p$ and Twisted Quasi-Invariants
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a106/
%G en
%F SIGMA_2020_16_a106
Michael Ren; Xiaomeng Xu. Quasi-Invariants in Characteristic $p$ and Twisted Quasi-Invariants. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a106/

[1] Berest Yu., Chalykh O., “Quasi-invariants of complex reflection groups”, Compos. Math., 147 (2011), 965–1002, arXiv: 0912.4518 | DOI | MR | Zbl

[2] Braverman A., Etingof P., Finkelberg M., Cyclotomic double affine Hecke algebras (with an appendix by Hiraku Nakajima and Daisuke Yamakawa), arXiv: 1611.10216

[3] Calogero F., “Solution of the one-dimensional $N$-body problems with quadratic and/or inversely quadratic pair potentials”, J. Math. Phys., 12 (1971), 419–436 | DOI | MR

[4] Chalykh O. A., Veselov A. P., “Commutative rings of partial differential operators and Lie algebras”, Comm. Math. Phys., 126 (1990), 597–611 | DOI | MR | Zbl

[5] Eisenbud D., Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995 | DOI | MR | Zbl

[6] Etingof P., Lectures on Calogero–Moser systems, arXiv: math.QA/0606233

[7] Feigin M., Veselov A. P., “Quasi-invariants of Coxeter groups and $m$-harmonic polynomials”, Int. Math. Res. Not., 2002 (2002), 521–545, arXiv: math-ph/0105014 | DOI | MR | Zbl

[8] Felder G., Veselov A. P., “Action of Coxeter groups on $m$-harmonic polynomials and Knizhnik–Zamolodchikov equations”, Mosc. Math. J., 3 (2003), 1269–1291, arXiv: math.QA/0108012 | DOI | MR | Zbl

[9] Moser J., “Three integrable Hamiltonian systems connected with isospectral deformations”, Adv. Math., 16 (1975), 197–220 | DOI | MR | Zbl