Mots-clés : quasi-invariant polynomials
@article{SIGMA_2020_16_a106,
author = {Michael Ren and Xiaomeng Xu},
title = {Quasi-Invariants in {Characteristic} $p$ and {Twisted} {Quasi-Invariants}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a106/}
}
Michael Ren; Xiaomeng Xu. Quasi-Invariants in Characteristic $p$ and Twisted Quasi-Invariants. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a106/
[1] Berest Yu., Chalykh O., “Quasi-invariants of complex reflection groups”, Compos. Math., 147 (2011), 965–1002, arXiv: 0912.4518 | DOI | MR | Zbl
[2] Braverman A., Etingof P., Finkelberg M., Cyclotomic double affine Hecke algebras (with an appendix by Hiraku Nakajima and Daisuke Yamakawa), arXiv: 1611.10216
[3] Calogero F., “Solution of the one-dimensional $N$-body problems with quadratic and/or inversely quadratic pair potentials”, J. Math. Phys., 12 (1971), 419–436 | DOI | MR
[4] Chalykh O. A., Veselov A. P., “Commutative rings of partial differential operators and Lie algebras”, Comm. Math. Phys., 126 (1990), 597–611 | DOI | MR | Zbl
[5] Eisenbud D., Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995 | DOI | MR | Zbl
[6] Etingof P., Lectures on Calogero–Moser systems, arXiv: math.QA/0606233
[7] Feigin M., Veselov A. P., “Quasi-invariants of Coxeter groups and $m$-harmonic polynomials”, Int. Math. Res. Not., 2002 (2002), 521–545, arXiv: math-ph/0105014 | DOI | MR | Zbl
[8] Felder G., Veselov A. P., “Action of Coxeter groups on $m$-harmonic polynomials and Knizhnik–Zamolodchikov equations”, Mosc. Math. J., 3 (2003), 1269–1291, arXiv: math.QA/0108012 | DOI | MR | Zbl
[9] Moser J., “Three integrable Hamiltonian systems connected with isospectral deformations”, Adv. Math., 16 (1975), 197–220 | DOI | MR | Zbl