Mots-clés : quivers.
@article{SIGMA_2020_16_a105,
author = {Ben Wormleighton},
title = {Walls for~$G${-Hilb} via {Reid's} {Recipe}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a105/}
}
Ben Wormleighton. Walls for $G$-Hilb via Reid's Recipe. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a105/
[1] Artin M., Verdier J. L., “Reflexive modules over rational double points”, Math. Ann., 270 (1985), 79–82 | DOI | MR | Zbl
[2] Batyrev V. V., Dais D. I., “Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry”, Topology, 35 (1996), 901–929, arXiv: alg-geom/9410001 | DOI | MR | Zbl
[3] Bocklandt R., Craw A., Quintero Vélez A., “Geometric Reid's recipe for dimer models”, Math. Ann., 361 (2015), 689–723, arXiv: 1305.0156 | DOI | MR | Zbl
[4] Bridgeland T., “Flops and derived categories”, Invent. Math., 147 (2002), 613–632, arXiv: math.AG/0009053 | DOI | MR | Zbl
[5] Bridgeland T., King A., Reid M., “The McKay correspondence as an equivalence of derived categories”, J. Amer. Math. Soc., 14 (2001), 535–554, arXiv: math.AG/9908027 | DOI | MR | Zbl
[6] Cautis S., Craw A., Logvinenko T., “Derived Reid's recipe for abelian subgroups of ${\rm SL}_3({\mathbb C})$”, J. Reine Angew. Math., 727 (2017), 1–48, arXiv: 1205.3110 | DOI | MR | Zbl
[7] Cautis S., Logvinenko T., “A derived approach to geometric McKay correspondence in dimension three”, J. Reine Angew. Math., 636 (2009), 193–236, arXiv: 0803.2990 | DOI | MR | Zbl
[8] Craw A., The McKay correspondence and representations of the McKay quiver, Ph.D. Thesis, Warwick University, 2001
[9] Craw A., “An explicit construction of the McKay correspondence for $A$-Hilb ${\mathbb C}^3$”, J. Algebra, 285 (2005), 682–705, arXiv: math.AG/0010053 | DOI | MR | Zbl
[10] Craw A., Ishii A., “Flops of $G$-Hilb and equivalences of derived categories by variation of GIT quotient”, Duke Math. J., 124 (2004), 259–307, arXiv: math.AG/0211360 | DOI | MR | Zbl
[11] Craw A., Ito Y., Karmazyn J., “Multigraded linear series and recollement”, Math. Z., 289 (2018), 535–565, arXiv: 1701.01679 | DOI | MR | Zbl
[12] Craw A., Reid M., “How to calculate $A$-Hilb ${\mathbb C}^3$”, Geometry of Toric Varieties, Sémin. Congr., 6, Soc. Math. France, Paris, 2002, 129–154, arXiv: math.AG/9909085 | MR | Zbl
[13] Denef J., Loeser F., “Motivic integration, quotient singularities and the McKay correspondence”, Compositio Math., 131 (2002), 267–290, arXiv: math.AG/9903187 | DOI | MR | Zbl
[14] Ishii A., Ito Y., Nolla de Celis A., “On $G/N$-Hilb of $N$-Hilb”, Kyoto J. Math., 53 (2013), 91–130, arXiv: 1108.2310 | DOI | MR | Zbl
[15] Ishii A., Ueda K., “Dimer models and the special McKay correspondence”, Geom. Topol., 19 (2015), 3405–3466, arXiv: 0905.0059 | DOI | MR | Zbl
[16] Ito Y., Nakajima H., “McKay correspondence and Hilbert schemes in dimension three”, Topology, 39 (2000), 1155–1191, arXiv: math.AG/9803120 | DOI | MR | Zbl
[17] Ito Y., Nakamura I., “McKay correspondence and Hilbert schemes”, Proc. Japan Acad. Ser. A Math. Sci., 72 (1996), 135–138 | DOI | MR | Zbl
[18] Ito Y., Wormleighton B., Wall-crossing for iterated $G$-Hilbert schemes, in preparation
[19] King A. D., “Moduli of representations of finite-dimensional algebras”, Quart. J. Math., 45 (1994), 515–530 | DOI | MR | Zbl
[20] Logvinenko T., “Derived McKay correspondence via pure-sheaf transforms”, Math. Ann., 341 (2008), 137–167, arXiv: math.AG/0606791 | DOI | MR | Zbl
[21] McKay J., “Cartan matrices, finite groups of quaternions, and Kleinian singularities”, Proc. Amer. Math. Soc., 81 (1981), 153–154 | DOI | MR | Zbl
[22] Nakamura I., “Hilbert schemes of abelian group orbits”, J. Algebraic Geom., 10 (2001), 757–779 | MR | Zbl
[23] Reid M., La correspondance de McKay, arXiv: math.AG/9911165 | MR
[24] Takahashi K., On essential representations in the McKay correpondence for ${\rm SL}_3({\mathbb C})$, Master's Thesis, Nagoya University, 2011
[25] Wilson P. M. H., “The Kähler cone on Calabi–Yau threefolds”, Invent. Math., 107 (1992), 561–583 | DOI | MR