Walls for $G$-Hilb via Reid's Recipe
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The three-dimensional McKay correspondence seeks to relate the geometry of crepant resolutions of Gorenstein $3$-fold quotient singularities $\mathbb{A}^3/G$ with the representation theory of the group $G$. The first crepant resolution studied in depth was the $G$-Hilbert scheme $G\text{-Hilb}\,\mathbb{A}^3$, which is also a moduli space of $\theta$-stable representations of the McKay quiver associated to $G$. As the stability parameter $\theta$ varies, we obtain many other crepant resolutions. In this paper we focus on the case where $G$ is abelian, and compute explicit inequalities for the chamber of the stability space defining $G\text{-Hilb}\,\mathbb{A}^3$ in terms of a marking of exceptional subvarieties of $G\text{-Hilb}\,\mathbb{A}^3$ called Reid's recipe. We further show which of these inequalities define walls. This procedure depends only on the combinatorics of the exceptional fibre and has applications to the birational geometry of other crepant resolutions.
Keywords: wall-crossing, McKay correspondence, Reid's recipe
Mots-clés : quivers.
@article{SIGMA_2020_16_a105,
     author = {Ben Wormleighton},
     title = {Walls for~$G${-Hilb} via {Reid's} {Recipe}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a105/}
}
TY  - JOUR
AU  - Ben Wormleighton
TI  - Walls for $G$-Hilb via Reid's Recipe
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a105/
LA  - en
ID  - SIGMA_2020_16_a105
ER  - 
%0 Journal Article
%A Ben Wormleighton
%T Walls for $G$-Hilb via Reid's Recipe
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a105/
%G en
%F SIGMA_2020_16_a105
Ben Wormleighton. Walls for $G$-Hilb via Reid's Recipe. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a105/

[1] Artin M., Verdier J. L., “Reflexive modules over rational double points”, Math. Ann., 270 (1985), 79–82 | DOI | MR | Zbl

[2] Batyrev V. V., Dais D. I., “Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry”, Topology, 35 (1996), 901–929, arXiv: alg-geom/9410001 | DOI | MR | Zbl

[3] Bocklandt R., Craw A., Quintero Vélez A., “Geometric Reid's recipe for dimer models”, Math. Ann., 361 (2015), 689–723, arXiv: 1305.0156 | DOI | MR | Zbl

[4] Bridgeland T., “Flops and derived categories”, Invent. Math., 147 (2002), 613–632, arXiv: math.AG/0009053 | DOI | MR | Zbl

[5] Bridgeland T., King A., Reid M., “The McKay correspondence as an equivalence of derived categories”, J. Amer. Math. Soc., 14 (2001), 535–554, arXiv: math.AG/9908027 | DOI | MR | Zbl

[6] Cautis S., Craw A., Logvinenko T., “Derived Reid's recipe for abelian subgroups of ${\rm SL}_3({\mathbb C})$”, J. Reine Angew. Math., 727 (2017), 1–48, arXiv: 1205.3110 | DOI | MR | Zbl

[7] Cautis S., Logvinenko T., “A derived approach to geometric McKay correspondence in dimension three”, J. Reine Angew. Math., 636 (2009), 193–236, arXiv: 0803.2990 | DOI | MR | Zbl

[8] Craw A., The McKay correspondence and representations of the McKay quiver, Ph.D. Thesis, Warwick University, 2001

[9] Craw A., “An explicit construction of the McKay correspondence for $A$-Hilb ${\mathbb C}^3$”, J. Algebra, 285 (2005), 682–705, arXiv: math.AG/0010053 | DOI | MR | Zbl

[10] Craw A., Ishii A., “Flops of $G$-Hilb and equivalences of derived categories by variation of GIT quotient”, Duke Math. J., 124 (2004), 259–307, arXiv: math.AG/0211360 | DOI | MR | Zbl

[11] Craw A., Ito Y., Karmazyn J., “Multigraded linear series and recollement”, Math. Z., 289 (2018), 535–565, arXiv: 1701.01679 | DOI | MR | Zbl

[12] Craw A., Reid M., “How to calculate $A$-Hilb ${\mathbb C}^3$”, Geometry of Toric Varieties, Sémin. Congr., 6, Soc. Math. France, Paris, 2002, 129–154, arXiv: math.AG/9909085 | MR | Zbl

[13] Denef J., Loeser F., “Motivic integration, quotient singularities and the McKay correspondence”, Compositio Math., 131 (2002), 267–290, arXiv: math.AG/9903187 | DOI | MR | Zbl

[14] Ishii A., Ito Y., Nolla de Celis A., “On $G/N$-Hilb of $N$-Hilb”, Kyoto J. Math., 53 (2013), 91–130, arXiv: 1108.2310 | DOI | MR | Zbl

[15] Ishii A., Ueda K., “Dimer models and the special McKay correspondence”, Geom. Topol., 19 (2015), 3405–3466, arXiv: 0905.0059 | DOI | MR | Zbl

[16] Ito Y., Nakajima H., “McKay correspondence and Hilbert schemes in dimension three”, Topology, 39 (2000), 1155–1191, arXiv: math.AG/9803120 | DOI | MR | Zbl

[17] Ito Y., Nakamura I., “McKay correspondence and Hilbert schemes”, Proc. Japan Acad. Ser. A Math. Sci., 72 (1996), 135–138 | DOI | MR | Zbl

[18] Ito Y., Wormleighton B., Wall-crossing for iterated $G$-Hilbert schemes, in preparation

[19] King A. D., “Moduli of representations of finite-dimensional algebras”, Quart. J. Math., 45 (1994), 515–530 | DOI | MR | Zbl

[20] Logvinenko T., “Derived McKay correspondence via pure-sheaf transforms”, Math. Ann., 341 (2008), 137–167, arXiv: math.AG/0606791 | DOI | MR | Zbl

[21] McKay J., “Cartan matrices, finite groups of quaternions, and Kleinian singularities”, Proc. Amer. Math. Soc., 81 (1981), 153–154 | DOI | MR | Zbl

[22] Nakamura I., “Hilbert schemes of abelian group orbits”, J. Algebraic Geom., 10 (2001), 757–779 | MR | Zbl

[23] Reid M., La correspondance de McKay, arXiv: math.AG/9911165 | MR

[24] Takahashi K., On essential representations in the McKay correpondence for ${\rm SL}_3({\mathbb C})$, Master's Thesis, Nagoya University, 2011

[25] Wilson P. M. H., “The Kähler cone on Calabi–Yau threefolds”, Invent. Math., 107 (1992), 561–583 | DOI | MR