Basic Properties of Non-Stationary Ruijsenaars Functions
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For any variable number, a non-stationary Ruijsenaars function was recently introduced as a natural generalization of an explicitly known asymptotically free solution of the trigonometric Ruijsenaars model, and it was conjectured that this non-stationary Ruijsenaars function provides an explicit solution of the elliptic Ruijsenaars model. We present alternative series representations of the non-stationary Ruijsenaars functions, and we prove that these series converge. We also introduce novel difference operators called $\mathcal{T}$ which, as we prove in the trigonometric limit and conjecture in the general case, act diagonally on the non-stationary Ruijsenaars functions.
Keywords: elliptic integrable systems, elliptic hypergeometric functions, Ruijsenaars systems.
@article{SIGMA_2020_16_a104,
     author = {Edwin Langmann and Masatoshi Noumi and Junichi Shiraishi},
     title = {Basic {Properties} {of~Non-Stationary} {Ruijsenaars} {Functions}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a104/}
}
TY  - JOUR
AU  - Edwin Langmann
AU  - Masatoshi Noumi
AU  - Junichi Shiraishi
TI  - Basic Properties of Non-Stationary Ruijsenaars Functions
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a104/
LA  - en
ID  - SIGMA_2020_16_a104
ER  - 
%0 Journal Article
%A Edwin Langmann
%A Masatoshi Noumi
%A Junichi Shiraishi
%T Basic Properties of Non-Stationary Ruijsenaars Functions
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a104/
%G en
%F SIGMA_2020_16_a104
Edwin Langmann; Masatoshi Noumi; Junichi Shiraishi. Basic Properties of Non-Stationary Ruijsenaars Functions. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a104/

[1] Atai F., Langmann E., “Series solutions of the non-stationary Heun equation”, SIGMA, 14 (2018), 011, 32 pp., arXiv: 1609.02525 | DOI | MR | Zbl

[2] Atai F., Langmann E., “Exact solutions by integrals of the non-stationary elliptic Calogero–Sutherland equation”, J. Integrable Syst., 5 (2020), xyaa001, 26 pp., arXiv: 1908.00529 | DOI | MR | Zbl

[3] Awata H., Kanno H., Mironov A., Morozov A., “On a complete solution of the quantum Dell system”, J. High Energy Phys., 2020:4 (2020), 212, 30 pp., arXiv: 1912.12897 | DOI | MR | Zbl

[4] Braden H. W., Marshakov A., Mironov A., Morozov A., “On double-elliptic integrable systems. I A duality argument for the case of ${\rm SU}(2)$”, Nuclear Phys. B, 573 (2000), 553–572, arXiv: hep-th/9906240 | DOI | MR | Zbl

[5] Felder G., Varchenko A., “The $q$-deformed Knizhnik–Zamolodchikov–Bernard heat equation”, Comm. Math. Phys., 221 (2001), 549–571, arXiv: math.QA/9809139 | DOI | MR | Zbl

[6] Felder G., Varchenko A., “$q$-deformed KZB heat equation: completeness, modular properties and ${\rm SL}(3,{\mathbb Z})$”, Adv. Math., 171 (2002), 228–275, arXiv: math.QA/0110081 | DOI | MR | Zbl

[7] Felder G., Varchenko A., “Hypergeometric theta functions and elliptic Macdonald polynomials”, Int. Math. Res. Not., 2004 (2004), 1037–1055, arXiv: math.QA/0309452 | DOI | MR | Zbl

[8] Fock V., Gorsky A., Nekrasov N., Rubtsov V., Duality in integrable systems and gauge theories, J. High Energy Phys., 2000, no. 7, 2000, 40 pp., arXiv: hep-th/9906235 | DOI | MR | Zbl

[9] Fukuda M., Ohkubo Y., Shiraishi J., Non-stationary Ruijsenaars functions for $\kappa=t^{-1/N}$ and intertwining operators of Ding–Iohara–Miki algebra, arXiv: 2002.00243 | MR

[10] Hallnäs M., Ruijsenaars S., Joint eigenfunctions for the relativistic Calogero–Moser Hamiltonians of hyperbolic type. III. Factorized asymptotics, arXiv: 1905.12918 | MR

[11] Koroteev P., Shakirov S., “The quantum DELL system”, Lett. Math. Phys., 110 (2020), 969–999, arXiv: 1906.10354 | DOI | MR | Zbl

[12] Langmann E., “Explicit solution of the (quantum) elliptic Calogero–Sutherland model”, Ann. Henri Poincaré, 15 (2014), 755–791, arXiv: math-ph/0401029 | DOI | MR | Zbl

[13] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995 | MR

[14] Nekrasov N. A., “Seiberg–Witten prepotential from instanton counting”, Adv. Theor. Math. Phys., 7 (2003), 831–864, arXiv: hep-th/0206161 | DOI | MR | Zbl

[15] Noumi M., Shiraishi J., A direct approach to the bispectral problem for the Ruijsenaars–Macdonald $q$-difference operators, arXiv: 1206.5364

[16] Olshanetsky M. A., Perelomov A. M., “Quantum integrable systems related to Lie algebras”, Phys. Rep., 94 (1983), 313–404 | DOI | MR

[17] Ruijsenaars S. N. M., “Complete integrability of relativistic Calogero–Moser systems and elliptic function identities”, Comm. Math. Phys., 110 (1987), 191–213 | DOI | MR | Zbl

[18] Ruijsenaars S. N. M., “Hilbert–Schmidt operators vs. integrable systems of elliptic Calogero–Moser type. I The eigenfunction identities”, Comm. Math. Phys., 286 (2009), 629–657 | DOI | MR | Zbl

[19] Ruijsenaars S. N. M., “Hilbert–Schmidt operators vs. integrable systems of elliptic Calogero–Moser type. II The $A_{N-1}$ case: first steps”, Comm. Math. Phys., 286 (2009), 659–680 | DOI | MR | Zbl

[20] Shiraishi J., “A conjecture about raising operators for Macdonald polynomials”, Lett. Math. Phys., 73 (2005), 71–81, arXiv: math.QA/0503727 | DOI | MR | Zbl

[21] Shiraishi J., “Affine screening operators, affine Laumon spaces and conjectures concerning non-stationary Ruijsenaars functions”, J. Integrable Syst., 4 (2019), xyz010, 30 pp., arXiv: 1903.07495 | DOI | MR