Conjectures and Open Questions on the Structure and Regularity of Spaces with Lower Ricci Curvature Bounds
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this short note we review some known results on the structure and regularity of spaces with lower Ricci curvature bounds. We present some known and new open questions about next steps.
Keywords: Ricci curvature, regularity.
@article{SIGMA_2020_16_a103,
     author = {Aaron Naber},
     title = {Conjectures and {Open} {Questions} on the {Structure} and {Regularity} of {Spaces} with {Lower} {Ricci} {Curvature} {Bounds}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a103/}
}
TY  - JOUR
AU  - Aaron Naber
TI  - Conjectures and Open Questions on the Structure and Regularity of Spaces with Lower Ricci Curvature Bounds
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a103/
LA  - en
ID  - SIGMA_2020_16_a103
ER  - 
%0 Journal Article
%A Aaron Naber
%T Conjectures and Open Questions on the Structure and Regularity of Spaces with Lower Ricci Curvature Bounds
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a103/
%G en
%F SIGMA_2020_16_a103
Aaron Naber. Conjectures and Open Questions on the Structure and Regularity of Spaces with Lower Ricci Curvature Bounds. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a103/

[1] Cheeger J., Colding T. H., “Lower bounds on Ricci curvature and the almost rigidity of warped products”, Ann. of Math., 144 (1996), 189–237 | DOI | MR | Zbl

[2] Cheeger J., Colding T. H., “On the structure of spaces with Ricci curvature bounded below. I”, J. Differential Geom., 46 (1997), 406–480 | DOI | MR | Zbl

[3] Cheeger J., Jiang W., Naber A., Rectifiability of singular sets in noncollapsed spaces with Ricci curvature bounded below, arXiv: 1805.07988

[4] Cheeger J., Naber A., “Lower bounds on Ricci curvature and quantitative behavior of singular sets”, Invent. Math., 191 (2013), 321–339, arXiv: 1103.1819 | DOI | MR | Zbl

[5] Colding T. H., Naber A., “Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications”, Ann. of Math., 176 (2012), 1173–1229, arXiv: 1102.5003 | DOI | MR | Zbl

[6] Colding T. H., Naber A., “Characterization of tangent cones of noncollapsed limits with lower Ricci bounds and applications”, Geom. Funct. Anal., 23 (2013), 134–148, arXiv: 1108.3244 | DOI | MR | Zbl

[7] Colding T. H., Naber A., “Lower Ricci curvature, branching and the bilipschitz structure of uniform Reifenberg spaces”, Adv. Math., 249 (2013), 348–358, arXiv: 1111.2184 | DOI | MR | Zbl

[8] Jiang W., Naber A., Curvature bounds under lower Ricci curvature, unpublished

[9] Li N., Naber A., Quantitative estimates on the singular sets of Alexandrov spaces, arXiv: 1912.03615 | MR

[10] Liu G., Székelyhidi G., Gromov–Hausdorff limits of Kähler manifolds with Ricci curvature bounded below, arXiv: 1804.08567