Triangle Groups: Automorphic Forms and Nonlinear Differential Equations
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the relations governing the ring of quasiautomorphic forms associated to triangle groups with a single cusp, thereby extending our earlier results on Hecke groups. The Eisenstein series associated to these triangle groups are shown to satisfy Ramanujan-like identities. These identities in turn allow us to associate a nonlinear differential equation to each triangle group. We show that they are solved by the quasiautomorphic Eisenstein series associated to the triangle group and its orbit under the group action. We conclude by discussing the Painlevé property of these nonlinear differential equations.
Keywords: triangle groups, Chazy equations
Mots-clés : Painlevé analysis.
@article{SIGMA_2020_16_a101,
     author = {Sujay K. Ashok and Dileep P. Jatkar and Madhusudhan Raman},
     title = {Triangle {Groups:} {Automorphic} {Forms} and {Nonlinear} {Differential} {Equations}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a101/}
}
TY  - JOUR
AU  - Sujay K. Ashok
AU  - Dileep P. Jatkar
AU  - Madhusudhan Raman
TI  - Triangle Groups: Automorphic Forms and Nonlinear Differential Equations
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a101/
LA  - en
ID  - SIGMA_2020_16_a101
ER  - 
%0 Journal Article
%A Sujay K. Ashok
%A Dileep P. Jatkar
%A Madhusudhan Raman
%T Triangle Groups: Automorphic Forms and Nonlinear Differential Equations
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a101/
%G en
%F SIGMA_2020_16_a101
Sujay K. Ashok; Dileep P. Jatkar; Madhusudhan Raman. Triangle Groups: Automorphic Forms and Nonlinear Differential Equations. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a101/

[1] Ablowitz M. J., Chakravarty S., Hahn H., “Integrable systems and modular forms of level 2”, J. Phys. A: Math. Gen., 39 (2006), 15341–15353, arXiv: math.NT/0609210 | DOI | MR | Zbl

[2] Ablowitz M. J., Ramani A., Segur H., “A connection between nonlinear evolution equations and ordinary differential equations of $P$-type. II”, J. Math. Phys., 21 (1980), 1006–1015 | DOI | MR | Zbl

[3] Ashok S. K., Dell'Aquila E., Lerda A., Raman M., “S-duality, triangle groups and modular anomalies in $\mathcal{N}=2$ SQCD”, J. High Energy Phys., 2016:4 (2016), 118, 52 pp., arXiv: 1601.01827 | DOI | MR | Zbl

[4] Ashok S. K., Jatkar D. P., Raman M., “Aspects of Hecke symmetry: anomalies, curves, and Chazy equations”, SIGMA, 16 (2020), 001, 26 pp., arXiv: 1810.07919 | DOI | MR | Zbl

[5] Başar G., Dunne G. V., Ünsal M., “Quantum geometry of resurgent perturbative/nonperturbative relations”, J. High Energy Phys., 2017:5 (2017), 087, 56 pp., arXiv: 1701.06572 | DOI | MR

[6] Bureau F. J., “Sur des systèmes différentiels non linéaires du troisième ordre et les équations différentielles non linéaires associées”, Acad. Roy. Belg. Bull. Cl. Sci. (5), 73 (1987), 335–353 | MR | Zbl

[7] Cheng M. C.N., Dabholkar A., “Borcherds–Kac–Moody symmetry of ${\mathcal N}=4$ dyons”, Commun. Number Theory Phys., 3 (2009), 59–110 | DOI | MR | Zbl

[8] Clarkson P. A., Olver P. J., “Symmetry and the Chazy equation”, J. Differential Equations, 124 (1996), 225–246 | DOI | MR | Zbl

[9] Conte R., Fordy A. P., Pickering A., “A perturbative Painlevé approach to nonlinear differential equations”, Phys. D, 69 (1993), 33–58 | DOI | MR | Zbl

[10] Cosgrove C. M., “Higher-order Painlevé equations in the polynomial class. II Bureau symbol $P1$”, Stud. Appl. Math., 116 (2006), 321–413 | DOI | MR | Zbl

[11] Doran C. F., Gannon T., Movasati H., Shokri K. M., “Automorphic forms for triangle groups”, Commun. Number Theory Phys., 7 (2013), 689–737, arXiv: 1307.4372 | DOI | MR | Zbl

[12] Fordy A., Pickering A., “Analysing negative resonances in the Painlevé test”, Phys. Lett. A, 160 (1991), 347–354 | DOI | MR

[13] Huber T., “Differential equations for cubic theta functions”, Int. J. Number Theory, 7 (2011), 1945–1957 | DOI | MR | Zbl

[14] Jatkar D. P., Sen A., “Dyon spectrum in CHL models”, J. High Energy Phys., 2006:4 (2006), 018, 32 pp., arXiv: hep-th/0510147 | DOI | MR

[15] Maier R. S., “Nonlinear differential equations satisfied by certain classical modular forms”, Manuscripta Math., 134 (2011), 1–42, arXiv: 0807.1081 | DOI | MR | Zbl

[16] Matsuda K., “Differential equations involving cubic theta functions and Eisenstein series”, Osaka J. Math., 57 (2020), 521–542, arXiv: 1609.07481 | MR | Zbl

[17] Milnor J., “On the $3$-dimensional Brieskorn manifolds $M(p,q,r)$”, Knots, Groups, and 3-Manifolds, Papers dedicated to the memory of RH Fox, Ann. of Math. Studies, 84, Princeton University Press, 1975, 175–225 | MR

[18] Nehari Z., Conformal mapping, Courier Corporation, 2012 | MR

[19] Persson D., Volpato R., “Fricke S-duality in CHL models”, J. High Energy Phys., 2015 (2015), 156, 55 pp., arXiv: 1504.07260 | DOI | MR | Zbl

[20] Pikering A., “Painlevé hierarchies and the Painlevé test”, Theoret. and Math. Phys., 137 (2003), 1733–1742 | DOI | MR

[21] Ramamani V., “On some algebraic identities connected with Ramanujan's work”, Ramanujan International Symposium on Analysis (Pune, 1987), Macmillan of India, New Delhi, 1989, 277–291 | MR

[22] Raman M., Aspects of Hecke symmetry I: Ramanujan identities and inversion formulas, arXiv: 1803.10224

[23] Raman M., Bala Subramanian P. N., “Chebyshev wells: periods, deformations, and resurgence”, Phys. Rev. D, 101 (2020), 126014, 18 pp., arXiv: 2002.01794 | DOI | MR

[24] Takhtajan L. A., “A simple example of modular forms as tau-functions for integrable equations”, Theoret. and Math. Phys., 93 (1992), 1308–1317 | DOI | MR | Zbl

[25] Tsanov V. V., “Triangle groups, automorphic forms, and torus knots”, Enseign. Math., 59 (2013), 73–113, arXiv: 1011.0461 | DOI | MR | Zbl

[26] Zagier D., “Quantum modular forms”, Quanta of Maths, Clay Math. Proc., 11, Amer. Math. Soc., Providence, RI, 2010, 659–675 | MR | Zbl