Mots-clés : Painlevé analysis.
@article{SIGMA_2020_16_a101,
author = {Sujay K. Ashok and Dileep P. Jatkar and Madhusudhan Raman},
title = {Triangle {Groups:} {Automorphic} {Forms} and {Nonlinear} {Differential} {Equations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a101/}
}
TY - JOUR AU - Sujay K. Ashok AU - Dileep P. Jatkar AU - Madhusudhan Raman TI - Triangle Groups: Automorphic Forms and Nonlinear Differential Equations JO - Symmetry, integrability and geometry: methods and applications PY - 2020 VL - 16 UR - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a101/ LA - en ID - SIGMA_2020_16_a101 ER -
%0 Journal Article %A Sujay K. Ashok %A Dileep P. Jatkar %A Madhusudhan Raman %T Triangle Groups: Automorphic Forms and Nonlinear Differential Equations %J Symmetry, integrability and geometry: methods and applications %D 2020 %V 16 %U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a101/ %G en %F SIGMA_2020_16_a101
Sujay K. Ashok; Dileep P. Jatkar; Madhusudhan Raman. Triangle Groups: Automorphic Forms and Nonlinear Differential Equations. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a101/
[1] Ablowitz M. J., Chakravarty S., Hahn H., “Integrable systems and modular forms of level 2”, J. Phys. A: Math. Gen., 39 (2006), 15341–15353, arXiv: math.NT/0609210 | DOI | MR | Zbl
[2] Ablowitz M. J., Ramani A., Segur H., “A connection between nonlinear evolution equations and ordinary differential equations of $P$-type. II”, J. Math. Phys., 21 (1980), 1006–1015 | DOI | MR | Zbl
[3] Ashok S. K., Dell'Aquila E., Lerda A., Raman M., “S-duality, triangle groups and modular anomalies in $\mathcal{N}=2$ SQCD”, J. High Energy Phys., 2016:4 (2016), 118, 52 pp., arXiv: 1601.01827 | DOI | MR | Zbl
[4] Ashok S. K., Jatkar D. P., Raman M., “Aspects of Hecke symmetry: anomalies, curves, and Chazy equations”, SIGMA, 16 (2020), 001, 26 pp., arXiv: 1810.07919 | DOI | MR | Zbl
[5] Başar G., Dunne G. V., Ünsal M., “Quantum geometry of resurgent perturbative/nonperturbative relations”, J. High Energy Phys., 2017:5 (2017), 087, 56 pp., arXiv: 1701.06572 | DOI | MR
[6] Bureau F. J., “Sur des systèmes différentiels non linéaires du troisième ordre et les équations différentielles non linéaires associées”, Acad. Roy. Belg. Bull. Cl. Sci. (5), 73 (1987), 335–353 | MR | Zbl
[7] Cheng M. C.N., Dabholkar A., “Borcherds–Kac–Moody symmetry of ${\mathcal N}=4$ dyons”, Commun. Number Theory Phys., 3 (2009), 59–110 | DOI | MR | Zbl
[8] Clarkson P. A., Olver P. J., “Symmetry and the Chazy equation”, J. Differential Equations, 124 (1996), 225–246 | DOI | MR | Zbl
[9] Conte R., Fordy A. P., Pickering A., “A perturbative Painlevé approach to nonlinear differential equations”, Phys. D, 69 (1993), 33–58 | DOI | MR | Zbl
[10] Cosgrove C. M., “Higher-order Painlevé equations in the polynomial class. II Bureau symbol $P1$”, Stud. Appl. Math., 116 (2006), 321–413 | DOI | MR | Zbl
[11] Doran C. F., Gannon T., Movasati H., Shokri K. M., “Automorphic forms for triangle groups”, Commun. Number Theory Phys., 7 (2013), 689–737, arXiv: 1307.4372 | DOI | MR | Zbl
[12] Fordy A., Pickering A., “Analysing negative resonances in the Painlevé test”, Phys. Lett. A, 160 (1991), 347–354 | DOI | MR
[13] Huber T., “Differential equations for cubic theta functions”, Int. J. Number Theory, 7 (2011), 1945–1957 | DOI | MR | Zbl
[14] Jatkar D. P., Sen A., “Dyon spectrum in CHL models”, J. High Energy Phys., 2006:4 (2006), 018, 32 pp., arXiv: hep-th/0510147 | DOI | MR
[15] Maier R. S., “Nonlinear differential equations satisfied by certain classical modular forms”, Manuscripta Math., 134 (2011), 1–42, arXiv: 0807.1081 | DOI | MR | Zbl
[16] Matsuda K., “Differential equations involving cubic theta functions and Eisenstein series”, Osaka J. Math., 57 (2020), 521–542, arXiv: 1609.07481 | MR | Zbl
[17] Milnor J., “On the $3$-dimensional Brieskorn manifolds $M(p,q,r)$”, Knots, Groups, and 3-Manifolds, Papers dedicated to the memory of RH Fox, Ann. of Math. Studies, 84, Princeton University Press, 1975, 175–225 | MR
[18] Nehari Z., Conformal mapping, Courier Corporation, 2012 | MR
[19] Persson D., Volpato R., “Fricke S-duality in CHL models”, J. High Energy Phys., 2015 (2015), 156, 55 pp., arXiv: 1504.07260 | DOI | MR | Zbl
[20] Pikering A., “Painlevé hierarchies and the Painlevé test”, Theoret. and Math. Phys., 137 (2003), 1733–1742 | DOI | MR
[21] Ramamani V., “On some algebraic identities connected with Ramanujan's work”, Ramanujan International Symposium on Analysis (Pune, 1987), Macmillan of India, New Delhi, 1989, 277–291 | MR
[22] Raman M., Aspects of Hecke symmetry I: Ramanujan identities and inversion formulas, arXiv: 1803.10224
[23] Raman M., Bala Subramanian P. N., “Chebyshev wells: periods, deformations, and resurgence”, Phys. Rev. D, 101 (2020), 126014, 18 pp., arXiv: 2002.01794 | DOI | MR
[24] Takhtajan L. A., “A simple example of modular forms as tau-functions for integrable equations”, Theoret. and Math. Phys., 93 (1992), 1308–1317 | DOI | MR | Zbl
[25] Tsanov V. V., “Triangle groups, automorphic forms, and torus knots”, Enseign. Math., 59 (2013), 73–113, arXiv: 1011.0461 | DOI | MR | Zbl
[26] Zagier D., “Quantum modular forms”, Quanta of Maths, Clay Math. Proc., 11, Amer. Math. Soc., Providence, RI, 2010, 659–675 | MR | Zbl