A Combinatorial Description of Certain Polynomials Related to the XYZ Spin Chain
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the connection between the three-color model and the polynomials $q_n(z)$ of Bazhanov and Mangazeev, which appear in the eigenvectors of the Hamiltonian of the XYZ spin chain. By specializing the parameters in the partition function of the 8VSOS model with DWBC and reflecting end, we find an explicit combinatorial expression for $q_n(z)$ in terms of the partition function of the three-color model with the same boundary conditions. Bazhanov and Mangazeev conjectured that $q_n(z)$ has positive integer coefficients. We prove the weaker statement that $q_n(z+1)$ and $(z+1)^{n(n+1)}q_n(1/(z+1))$ have positive integer coefficients. Furthermore, for the three-color model, we find some results on the number of states with a given number of faces of each color, and we compute strict bounds for the possible number of faces of each color.
Keywords: eight-vertex SOS model, domain wall boundary conditions, reflecting end, three-color model, partition function, XYZ spin chain, polynomials
Mots-clés : positive coefficients.
@article{SIGMA_2020_16_a100,
     author = {Linnea Hietala},
     title = {A {Combinatorial} {Description} of {Certain} {Polynomials} {Related} to the {XYZ} {Spin} {Chain}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a100/}
}
TY  - JOUR
AU  - Linnea Hietala
TI  - A Combinatorial Description of Certain Polynomials Related to the XYZ Spin Chain
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a100/
LA  - en
ID  - SIGMA_2020_16_a100
ER  - 
%0 Journal Article
%A Linnea Hietala
%T A Combinatorial Description of Certain Polynomials Related to the XYZ Spin Chain
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a100/
%G en
%F SIGMA_2020_16_a100
Linnea Hietala. A Combinatorial Description of Certain Polynomials Related to the XYZ Spin Chain. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a100/

[1] Baxter R. J., “Three-colorings of the square lattice: a hard squares model”, J. Math. Phys., 11 (1970), 3116–3124 | DOI | MR | Zbl

[2] Baxter R. J., “Partition function of the eight-vertex lattice model”, Ann. Physics, 70 (1972), 193–228 | DOI | MR | Zbl

[3] Baxter R. J., “Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain I. Some fundamental eigenvectors”, Ann. Physics, 76 (1973), 1–24 | DOI | MR | Zbl

[4] Bazhanov V. V., Mangazeev V. V., “Eight-vertex model and non-stationary Lamé equation”, J. Phys. A: Math. Gen., 38 (2005), L145–L153, arXiv: hep-th/0411094 | DOI | MR | Zbl

[5] Bazhanov V. V., Mangazeev V. V., “The eight-vertex model and Painlevé VI”, J. Phys. A: Math. Gen., 39 (2006), 12235–12243, arXiv: hep-th/0602122 | DOI | MR | Zbl

[6] Bressoud D. M., Proofs and confirmations: the story of the alternating sign matrix conjecture, MAA Spectrum, Mathematical Association of America, Washington, DC; Cambridge University Press, Cambridge, 1999 | MR

[7] Filali G., “Elliptic dynamical reflection algebra and partition function of SOS model with reflecting end”, J. Geom. Phys., 61 (2011), 1789–1796, arXiv: 1012.0516 | DOI | MR | Zbl

[8] Izergin A. G., “Partition function of the six-vertex model in a finite volume”, Soviet Phys. Dokl., 32 (1987), 878–879 | MR | Zbl

[9] Izergin A. G., Coker D. A., Korepin V. E., “Determinant formula for the six-vertex model”, J. Phys. A: Math. Gen., 25 (1992), 4315–4334 | DOI | MR | Zbl

[10] Korepin V. E., “Calculation of norms of Bethe wave functions”, Comm. Math. Phys., 86 (1982), 391–418 | DOI | MR | Zbl

[11] Kuperberg G., “Another proof of the alternating-sign matrix conjecture”, Int. Math. Res. Not., 1996 (1996), 139–150, arXiv: math.CO/9712207 | DOI | MR | Zbl

[12] Kuperberg G., “Symmetry classes of alternating-sign matrices under one roof”, Ann. of Math., 156 (2002), 835–866, arXiv: math.CO/0008184 | DOI | MR

[13] Lamers J., On elliptic quantum integrability: vertex models, solid-on-solid models and spin chains, Ph.D. Thesis, Utrecht University, 2016

[14] Lieb E. H., “Residual entropy of square ice”, Phys. Rev., 162 (1967), 162–172 | DOI

[15] Mangazeev V. V., Bazhanov V. V., “The eight-vertex model and Painlevé VI equation II: eigenvector results”, J. Phys. A: Math. Theor., 43 (2010), 085206, 16 pp., arXiv: 0912.2163 | DOI | MR | Zbl

[16] Mills W. H., Robbins D. P., Rumsey Jr. H., “Alternating sign matrices and descending plane partitions”, J. Combin. Theory Ser. A, 34 (1983), 340–359 | DOI | MR | Zbl

[17] Propp J., “The many faces of alternating-sign matrices”, Discrete Models: Combinatorics, Computation, and Geometry (Paris, 2001), Discrete Math. Theor. Comput. Sci. Proc., AA, eds. R. Cori, J. Mazoyer, M. Morvan, R. Mosseri, Maison Inform. Math. Discrèt. (MIMD), Paris, 2001, 043–058, arXiv: math.CO/0208125 | MR

[18] Razumov A. V., Stroganov Yu. G., “Spin chains and combinatorics”, J. Phys. A: Math. Gen., 34 (2001), 3185–3190, arXiv: cond-mat/0012141 | DOI | MR | Zbl

[19] Razumov A. V., Stroganov Yu. G., “A possible combinatorial point for the XYZ spin chain”, Theoret. and Math. Phys., 164 (2010), 977–991, arXiv: 0911.5030 | DOI | Zbl

[20] Rosengren H., “An Izergin–Korepin-type identity for the 8VSOS model, with applications to alternating sign matrices”, Adv. in Appl. Math., 43 (2009), 137–155, arXiv: 0801.1229 | DOI | MR | Zbl

[21] Rosengren H., “The three-colour model with domain wall boundary conditions”, Adv. in Appl. Math., 46 (2011), 481–535, arXiv: 0911.0561 | DOI | MR | Zbl

[22] Rosengren H., Special polynomials related to the supersymmetric eight-vertex model. I Behaviour at cusps, arXiv: 1305.0666 | MR

[23] Rosengren H., Special polynomials related to the supersymmetric eight-vertex model. III Painlevé VI equation, arXiv: 1405.5318 | MR

[24] Rosengren H., “Special polynomials related to the supersymmetric eight-vertex model: a summary”, Comm. Math. Phys., 340 (2015), 1143–1170, arXiv: 1503.02833 | DOI | MR | Zbl

[25] Sutherland B., “Exact solution of a two-dimensional model for hydrogen-bonded crystals”, Phys. Rev. Lett., 19 (1967), 103–104 | DOI

[26] Tsuchiya O., “Determinant formula for the six-vertex model with reflecting end”, J. Math. Phys., 39 (1998), 5946–5951, arXiv: solv-int/9804010 | DOI | MR | Zbl

[27] Zeilberger D., “Proof of the alternating sign matrix conjecture”, Electron. J. Combin., 3 (1996), R13, 84 pp., arXiv: math.CO/9407211 | DOI | MR | Zbl

[28] Zinn-Justin P., Six-vertex, loop and tiling models: integrability and combinatorics, Habilitation Thesis, Paris, 2008, arXiv: 0901.0665

[29] Zinn-Justin P., “Sum rule for the eight-vertex model on its combinatorial line”, Symmetries, Integrable Systems and Representations, Springer Proc. Math. Stat., 40, Springer, Heidelberg, 2013, 599–637, arXiv: 1202.4420 | DOI | MR | Zbl