@article{SIGMA_2020_16_a10,
author = {Sebastian Klein and Martin Kilian},
title = {On {Closed} {Finite} {Gap} {Curves} in {Spaceforms~I}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2020},
volume = {16},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a10/}
}
Sebastian Klein; Martin Kilian. On Closed Finite Gap Curves in Spaceforms I. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a10/
[1] Belokolos E. D., Bobenko A. I., Enol'skii V. Z., Its A. R., Matveev V. B., Algebro-geometric approach to nonlinear integrable equations, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1994 | Zbl
[2] Calini A., Ivey T., “Finite-gap solutions of the vortex filament equation: genus one solutions and symmetric solutions”, J. Nonlinear Sci., 15 (2005), 321–361 | DOI | MR | Zbl
[3] Calini A., Ivey T., “Finite-gap solutions of the vortex filament equation: isoperiodic deformations”, J. Nonlinear Sci., 17 (2007), 527–567, arXiv: nlin.SI/0612065 | DOI | MR | Zbl
[4] Doliwa A., Santini P. M., “An elementary geometric characterization of the integrable motions of a curve”, Phys. Lett. A, 185 (1994), 373–384 | DOI | MR | Zbl
[5] Drinfel'd V.G., Sokolov V. V., “Equations of Korteweg–de Vries type, and simple Lie algebras”, Dokl. Akad. Nauk SSSR, 258 (1981), 11–16 | MR | Zbl
[6] Goldstein R. E., Petrich D. M., “The Korteweg–de Vries hierarchy as dynamics of closed curves in the plane”, Phys. Rev. Lett., 67 (1991), 3203–3206 | DOI | MR | Zbl
[7] Grafakos L., Classical Fourier analysis, Graduate Texts in Mathematics, 249, 2nd ed., Springer, New York, 2008 | DOI | MR | Zbl
[8] Grinevich P. G., “Approximation theorem for the self-focusing nonlinear Schrödinger equation and for the periodic curves in $R^3$”, Phys. D, 152/153 (2001), 20–27, arXiv: nlin.SI/0002020 | DOI | MR | Zbl
[9] Grinevich P. G., Santini P. M., “The finite gap method and the periodic NLS Cauchy problem of anomalous waves for a finite number of unstable modes”, Russian Math. Surveys, 74 (2019), 211–263, arXiv: 1810.09247 | DOI | MR | Zbl
[10] Grinevich P. G., Schmidt M. U., “Period preserving nonisospectral flows and the moduli space of periodic solutions of soliton equations”, Phys. D, 87 (1995), 73–98, arXiv: solv-int/9412005 | DOI | MR | Zbl
[11] Grinevich P. G., Schmidt M. U., Closed curves in $\mathbb{R}^3$: a characterization in terms of curvature and torsion, the Hasimoto map and periodic solutions of the filament equation, arXiv: dg-ga/9703020
[12] Grinevich P. G., Schmidt M. U., “Closed curves in $R^3$ and the nonlinear Schrödinger equation”, Proceedings of the Workshop on Nonlinearity, Integrability and All That: Twenty Years after NEEDS '79 (Gallipoli, 1999), World Sci. Publ., River Edge, NJ, 2000, 139–145 | DOI | MR | Zbl
[13] Hasimoto H., “A soliton on a vortex filament”, J. Fluid Mech., 51 (1972), 477–485 | DOI | MR | Zbl
[14] Kappeler T., Lohrmann P., Topalov P., Zung N. T., “Birkhoff coordinates for the focusing NLS equation”, Comm. Math. Phys., 285 (2009), 1087–1107 | DOI | MR | Zbl
[15] Klein S., “Spectral data for simply periodic solutions of the sinh-Gordon equation”, Differential Geom. Appl., 54 (2017), 129–149, arXiv: 1701.03145 | DOI | MR | Zbl
[16] Klein S., A spectral theory for simply periodic solutions of the sinh-Gordon equation, Lecture Notes in Math., 2229, Springer, Cham, 2018 | DOI | MR | Zbl
[17] Klein S., Kilian M., “On closed finite gap curves in spaceforms II”, J. Integrable Syst. (to appear) , arXiv: 1901.03242 | MR
[18] Klein S., Lübcke E., Schmidt M. U., Simon T., Singular curves and Baker–Akhiezer functions, arXiv: 1609.07011
[19] Langer J., “Recursion in curve geometry”, New York J. Math., 5 (1999), 25–51 | MR | Zbl
[20] Langer J., Perline R., “Curve motion inducing modified Korteweg–de Vries systems”, Phys. Lett. A, 239 (1998), 36–40 | DOI | MR | Zbl
[21] Langer J., Singer D., “Curves in the hyperbolic plane and mean curvature of tori in $3$-space”, Bull. London Math. Soc., 16 (1984), 531–534 | DOI | MR | Zbl
[22] Marčenko V. A., “The periodic Korteweg–de Vries problem”, Math USSR Sb., 24 (1974), 319–344 | DOI
[23] Schmidt M. U., Integrable systems and Riemann surfaces of infinite genus, Mem. Amer. Math. Soc., 122, 1996, viii+111 pp. | DOI | MR
[24] Zakharov V. E., Shabat A. B., “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media”, Soviet Phys. JETP, 34 (1971), 62–69 | MR