Mots-clés : Benjamin–Ono, solitons
@article{SIGMA_2019_15_a97,
author = {Alexander Moll},
title = {Exact {Bohr{\textendash}Sommerfeld} {Conditions} for the {Quantum} {Periodic} {Benjamin{\textendash}Ono} {Equation}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a97/}
}
Alexander Moll. Exact Bohr–Sommerfeld Conditions for the Quantum Periodic Benjamin–Ono Equation. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a97/
[1] Abanov A. G., Wiegmann P. B., “Quantum hydrodynamics, the quantum Benjamin–Ono equation, and the Calogero model”, Phys. Rev. Lett., 95 (2005), 076402, 4 pp., arXiv: cond-mat/0504041 | DOI
[2] Andrić I., Bardek V., “$1/{N}$ corrections in Calogero-type models using the collective-field method”, J. Phys. A: Math. Gen., 21 (1988), 2847–2853 | DOI
[3] Awata H., Matsuo Y., Odake S., Shiraishi J., “Collective field theory, Calogero–Sutherland model and generalized matrix models”, Phys. Lett. B, 347 (1995), 49–55 | DOI | MR | Zbl
[4] Benjamin T. B., “Internal waves of permanent form in fluids of great depth”, J. Fluid Mech., 29 (1967), 559–592 | DOI | Zbl
[5] Bettelheim E., Abanov A. G., Wiegmann P. B., “Nonlinear quantum shock waves in fractional quantum Hall edge states”, Phys. Rev. Lett., 97 (2006), 246401, 4 pp. | DOI
[6] Birman M. S., Pushnitski A. B., “Spectral shift function, amazing and multifaceted”, Integral Equations Operator Theory, 30 (1998), 191–199 | DOI | MR | Zbl
[7] Boutet de Monvel L., Guillemin V., The spectral theory of Toeplitz operators, Annals of Mathematics Studies, 99, Princeton University Press, Princeton, NJ, 1981 | DOI | MR | Zbl
[8] Calogero F., Isochronous systems, Oxford University Press, Oxford, 2008 | DOI | MR | Zbl
[9] Coleman S., “Quantum sine-Gordon equation as the massive Thirring model”, Phys. Rev. D, 11 (1975), 2088–2097 | DOI
[10] Coleman S., “Classical lumps and their quantum descendants”, New Phenomena in Subnuclear Physics, Subnuclear Series, 13, Springer, Boston, MA, 1977, 297–421 | DOI | MR
[11] Dashen R. F., Hasslacher B., Neveu A., “Nonperturbative methods and extended-hadron models in field theory. I Semiclassical functional methods”, Phys. Rev. D, 10 (1974), 4114–4129 | DOI | MR
[12] Dashen R. F., Hasslacher B., Neveu A., “Nonperturbative methods and extended-hadron models in field theory. II Two-dimensional models and extended hadrons”, Phys. Rev. D, 10 (1974), 4130–4138 | DOI
[13] Dashen R. F., Hasslacher B., Neveu A., “Semiclassical bound states in an asymptotically free theory”, Phys. Rev. D, 12 (1975), 2443–2458 | DOI | MR
[14] Davis R. E., Acrivos A., “The stability of oscillatory internal waves”, J. Fluid Mech., 30 (1967), 723–736 | DOI | Zbl
[15] Deift P., Its A., Krasovsky I., “Toeplitz matrices and Toeplitz determinants under the impetus of the Ising model: some history and some recent results”, Comm. Pure Appl. Math., 66 (2013), 1360–1438 | DOI | MR | Zbl
[16] Dobrokhotov S. Yu., Krichever I. M., “Multi-phase solutions of the Benjamin–Ono equation and their averaging”, Math. Notes, 49 (1991), 583–594 | DOI | MR | Zbl
[17] Dubrovin B., “Symplectic field theory of a disk, quantum integrable systems, and Schur polynomials”, Ann. Henri Poincaré, 17 (2016), 1595–1613, arXiv: 1407.5824 | DOI | MR | Zbl
[18] Etingof P., Calogero–Moser systems and representation theory, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2007 | DOI | MR | Zbl
[19] Faddeev L. D., “Quantum completely integrable models in field theory”, Mathematical Physics Reviews, v. 1, Soviet Sci. Rev. Sect. C: Math. Phys. Rev., 1, Harwood Academic, Chur, 1980, 107–155 | MR
[20] Faddeev L. D., 40 years in mathematical physics, World Scientific Series in 20th Century Mathematics, 2, World Sci. Publ. Co., Inc., River Edge, NJ, 1995 | DOI | MR | Zbl
[21] Gérard P., Kappeler T., On the integrability of the Benjamin–Ono equation on the torus, arXiv: 1905.01849
[22] Goldstone J., Jackiw R., “Quantization of nonlinear waves”, Phys. Rev. D, 11 (1975), 1486–1498 | DOI | MR
[23] Guillemin V., Sternberg S., “The Gelfand–Cetlin system and quantization of the complex flag manifolds”, J. Funct. Anal., 52 (1983), 106–128 | DOI | MR | Zbl
[24] Janson S., Gaussian Hilbert spaces, Cambridge Tracts in Mathematics, 129, Cambridge University Press, Cambridge, 1997 | DOI | MR | Zbl
[25] Jevicki A., “Nonperturbative collective field theory”, Nuclear Phys. B, 376 (1992), 75–98 | DOI | MR
[26] Kac V., Vertex algebras for beginners, University Lecture Series, 10, 2nd ed., Amer. Math. Soc., Providence, RI, 1998 | DOI | MR | Zbl
[27] Karabali D., Polychronakos A. P., “Exact operator Hamiltonians and interactions in the droplet bosonization method”, Phys. Rev. D, 90 (2014), 025002, 11 pp., arXiv: 1204.2788 | DOI
[28] Kerov S. V., “Interlacing measures”, Kirillov's Seminar on Representation Theory, Amer. Math. Soc. Transl. Ser. 2, 181, Amer. Math. Soc., Providence, RI, 1998, 35–83 | DOI | MR | Zbl
[29] Kerov S. V., “Anisotropic Young diagrams and symmetric Jack functions”, Funct. Anal. Appl., 34 (2000), 41–51, arXiv: math.CO/9712267 | DOI | MR | Zbl
[30] Kirillov A. A., “Geometric quantization”, Dynamical Systems, IV, Encyclopaedia Math. Sci., 4, Springer, Berlin, 2001, 139–176 | DOI | MR
[31] Korepin V. E., Faddeev L. D., “Quantization of solitons”, Theoret. and Math. Phys., 25 (1975), 1039–1049 | DOI | MR
[32] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995 | MR
[33] Matsuno Y., “Interaction of the Benjamin–Ono solitons”, J. Phys. A: Math. Gen., 13 (1980), 1519–1536 | DOI | MR | Zbl
[34] Maulik D., Okounkov A., Quantum groups and quantum cohomology, Astérisque, 408, 2019, ix+209 pp., arXiv: 1211.1287 | MR | Zbl
[35] Mironov A., Morozov A., “Nekrasov functions and exact Bohr–Sommerfeld integrals”, J. High Energy Phys., 2010:4 (2010), 040, 15 pp., arXiv: 0910.5670 | DOI | MR | Zbl
[36] Molinet L., “Global well-posedness in $L^2$ for the periodic Benjamin–Ono equation”, Amer. J. Math., 130 (2008), 635–683, arXiv: math.AP/0601217 | DOI | MR | Zbl
[37] Moll A., Random partitions and the quantum Benjamin–Ono hierarchy, Ph.D. Thesis, Massachusetts Institute of Technology, 2016, arXiv: 1508.03063 | MR
[38] Moll A., “Finite gap conditions and small dispersion asymptotics for the classical periodic Benjamin–Ono equation”, Quart. Appl. Math. (to appear) , arXiv: 1901.04089
[39] Moll A., Soliton quantization and random partitions, in preparation
[40] Nazarov M., Sklyanin E., “Integrable hierarchy of the quantum Benjamin–Ono equation”, SIGMA, 9 (2013), 078, 14 pp., arXiv: 1309.6464 | DOI | MR | Zbl
[41] Nazarov M., Sklyanin E., “Sekiguchi–Debiard operators at infinity”, Comm. Math. Phys., 324 (2013), 831–849, arXiv: 1212.2781 | DOI | MR | Zbl
[42] Nekrasov N. A., “Seiberg–Witten prepotential from instanton counting”, Adv. Theor. Math. Phys., 7 (2003), 831–864, arXiv: hep-th/0206161 | DOI | MR | Zbl
[43] Nekrasov N., Pestun V., Shatashvili S., “Quantum geometry and quiver gauge theories”, Comm. Math. Phys., 357 (2018), 519–567, arXiv: 1312.6689 | DOI | MR | Zbl
[44] Nekrasov N. A., Shatashvili S. L., “Quantization of integrable systems and four dimensional gauge theories”, XVIth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2010, 265–289, arXiv: 0908.4052 | DOI | MR | Zbl
[45] Okounkov A., “Infinite wedge and random partitions”, Selecta Math. (N.S.), 7 (2001), 57–81, arXiv: math.RT/9907127 | DOI | MR | Zbl
[46] Okounkov A., On the crossroads of enumerative geometry and geometric representation theory, arXiv: 1801.09818 | MR
[47] Ono H., “Algebraic solitary waves in stratified fluids”, J. Phys. Soc. Japan, 39 (1975), 1082–1091 | DOI | MR | Zbl
[48] Polychronakos A. P., “Waves and solitons in the continuum limit of the Calogero–Sutherland model”, Phys. Rev. Lett., 74 (1995), 5153–5157, arXiv: hep-th/9411054 | DOI | MR | Zbl
[49] Ruijsenaars S. N. M., “Systems of Calogero–Moser type”, Particles and Fields (Banff, AB, 1994), CRM Ser. Math. Phys., Springer, New York, 1999, 251–352 | DOI | MR
[50] Satsuma J., Ishimori Y., “Periodic wave and rational soliton solutions of the Benjamin–Ono equation”, J. Phys. Soc. Japan, 46 (1979), 681–687 | DOI | MR
[51] Saut J.-C., Benjamin–Ono and intermediate long wave equation: modeling, IST and PDE, arXiv: 1811.08652
[52] Sergeev A. N., Veselov A. P., “Dunkl operators at infinity and Calogero–Moser systems”, Int. Math. Res. Not., 2015 (2015), 10959–10986, arXiv: 1311.0853 | DOI | MR | Zbl
[53] Sergeev A. N., Veselov A. P., “Jack–Laurent symmetric functions”, Proc. Lond. Math. Soc., 111 (2015), 63–92, arXiv: 1310.2462 | DOI | MR | Zbl
[54] Sklyanin E. K., Takhtadzhyan L. A., Faddeev L. D., “Quantum inverse problem. I”, Theoret. and Math. Phys., 40 (1979), 688–706 | DOI | MR
[55] Stanley R. P., “Some combinatorial properties of Jack symmetric functions”, Adv. Math., 77 (1989), 76–115 | DOI | MR | Zbl
[56] Sutherland B., Beautiful models: 70 years of exactly solved quantum many-body problems, World Sci. Publ. Co., Inc., River Edge, NJ, 2004 | DOI | MR | Zbl
[57] Takhtajan L. A., Quantum mechanics for mathematicians, Graduate Studies in Mathematics, 95, Amer. Math. Soc., Providence, RI, 2008 | DOI | MR | Zbl
[58] Takhtajan L. A., Alekseev A. Yu., Aref'eva I. Ya., Semenov-Tian-Shansky M. A., Sklyanin E. K., Smirnov F. A., Shatashvili S. L., “Scientific heritage of L. D. Faddeev”, Russian Math. Surveys, 72 (2017), 977–1081 | DOI | MR | Zbl
[59] Vũ Ngoc S., “Quantum monodromy and Bohr–Sommerfeld rules”, Lett. Math. Phys., 55 (2001), 205–217 | DOI | MR | Zbl
[60] Wiegmann P., “Nonlinear hydrodynamics and fractionally quantized solitons at the fractional quantum Hall edge”, Phys. Rev. Lett., 108 (2012), 206810, 5 pp., arXiv: 1112.0810 | DOI
[61] Woodhouse N. M. J., Geometric quantization, Oxford Mathematical Monographs, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1992 | MR