Exact Bohr–Sommerfeld Conditions for the Quantum Periodic Benjamin–Ono Equation
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we describe the spectrum of the quantum periodic Benjamin–Ono equation in terms of the multi-phase solutions of the underlying classical system (the periodic multi-solitons). To do so, we show that the semi-classical quantization of this system given by Abanov–Wiegmann is exact and equivalent to the geometric quantization by Nazarov–Sklyanin. First, for the Liouville integrable subsystems defined from the multi-phase solutions, we use a result of Gérard–Kappeler to prove that if one neglects the infinitely-many transverse directions in phase space, the regular Bohr–Sommerfeld conditions on the actions are equivalent to the condition that the singularities of the Dobrokhotov–Krichever multi-phase spectral curves define an anisotropic partition (Young diagram). Next, we locate the renormalization of the classical dispersion coefficient by Abanov–Wiegmann in the realization of Jack functions as quantum periodic Benjamin–Ono stationary states. Finally, we show that the classical energies of Bohr–Sommerfeld multi-phase solutions in the renormalized theory give the exact quantum spectrum found by Nazarov–Sklyanin without any Maslov index correction.
Keywords: geometric quantization, anisotropic Young diagrams.
Mots-clés : Benjamin–Ono, solitons
@article{SIGMA_2019_15_a97,
     author = {Alexander Moll},
     title = {Exact {Bohr{\textendash}Sommerfeld} {Conditions} for the {Quantum} {Periodic} {Benjamin{\textendash}Ono} {Equation}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a97/}
}
TY  - JOUR
AU  - Alexander Moll
TI  - Exact Bohr–Sommerfeld Conditions for the Quantum Periodic Benjamin–Ono Equation
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a97/
LA  - en
ID  - SIGMA_2019_15_a97
ER  - 
%0 Journal Article
%A Alexander Moll
%T Exact Bohr–Sommerfeld Conditions for the Quantum Periodic Benjamin–Ono Equation
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a97/
%G en
%F SIGMA_2019_15_a97
Alexander Moll. Exact Bohr–Sommerfeld Conditions for the Quantum Periodic Benjamin–Ono Equation. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a97/

[1] Abanov A. G., Wiegmann P. B., “Quantum hydrodynamics, the quantum Benjamin–Ono equation, and the Calogero model”, Phys. Rev. Lett., 95 (2005), 076402, 4 pp., arXiv: cond-mat/0504041 | DOI

[2] Andrić I., Bardek V., “$1/{N}$ corrections in Calogero-type models using the collective-field method”, J. Phys. A: Math. Gen., 21 (1988), 2847–2853 | DOI

[3] Awata H., Matsuo Y., Odake S., Shiraishi J., “Collective field theory, Calogero–Sutherland model and generalized matrix models”, Phys. Lett. B, 347 (1995), 49–55 | DOI | MR | Zbl

[4] Benjamin T. B., “Internal waves of permanent form in fluids of great depth”, J. Fluid Mech., 29 (1967), 559–592 | DOI | Zbl

[5] Bettelheim E., Abanov A. G., Wiegmann P. B., “Nonlinear quantum shock waves in fractional quantum Hall edge states”, Phys. Rev. Lett., 97 (2006), 246401, 4 pp. | DOI

[6] Birman M. S., Pushnitski A. B., “Spectral shift function, amazing and multifaceted”, Integral Equations Operator Theory, 30 (1998), 191–199 | DOI | MR | Zbl

[7] Boutet de Monvel L., Guillemin V., The spectral theory of Toeplitz operators, Annals of Mathematics Studies, 99, Princeton University Press, Princeton, NJ, 1981 | DOI | MR | Zbl

[8] Calogero F., Isochronous systems, Oxford University Press, Oxford, 2008 | DOI | MR | Zbl

[9] Coleman S., “Quantum sine-Gordon equation as the massive Thirring model”, Phys. Rev. D, 11 (1975), 2088–2097 | DOI

[10] Coleman S., “Classical lumps and their quantum descendants”, New Phenomena in Subnuclear Physics, Subnuclear Series, 13, Springer, Boston, MA, 1977, 297–421 | DOI | MR

[11] Dashen R. F., Hasslacher B., Neveu A., “Nonperturbative methods and extended-hadron models in field theory. I Semiclassical functional methods”, Phys. Rev. D, 10 (1974), 4114–4129 | DOI | MR

[12] Dashen R. F., Hasslacher B., Neveu A., “Nonperturbative methods and extended-hadron models in field theory. II Two-dimensional models and extended hadrons”, Phys. Rev. D, 10 (1974), 4130–4138 | DOI

[13] Dashen R. F., Hasslacher B., Neveu A., “Semiclassical bound states in an asymptotically free theory”, Phys. Rev. D, 12 (1975), 2443–2458 | DOI | MR

[14] Davis R. E., Acrivos A., “The stability of oscillatory internal waves”, J. Fluid Mech., 30 (1967), 723–736 | DOI | Zbl

[15] Deift P., Its A., Krasovsky I., “Toeplitz matrices and Toeplitz determinants under the impetus of the Ising model: some history and some recent results”, Comm. Pure Appl. Math., 66 (2013), 1360–1438 | DOI | MR | Zbl

[16] Dobrokhotov S. Yu., Krichever I. M., “Multi-phase solutions of the Benjamin–Ono equation and their averaging”, Math. Notes, 49 (1991), 583–594 | DOI | MR | Zbl

[17] Dubrovin B., “Symplectic field theory of a disk, quantum integrable systems, and Schur polynomials”, Ann. Henri Poincaré, 17 (2016), 1595–1613, arXiv: 1407.5824 | DOI | MR | Zbl

[18] Etingof P., Calogero–Moser systems and representation theory, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2007 | DOI | MR | Zbl

[19] Faddeev L. D., “Quantum completely integrable models in field theory”, Mathematical Physics Reviews, v. 1, Soviet Sci. Rev. Sect. C: Math. Phys. Rev., 1, Harwood Academic, Chur, 1980, 107–155 | MR

[20] Faddeev L. D., 40 years in mathematical physics, World Scientific Series in 20th Century Mathematics, 2, World Sci. Publ. Co., Inc., River Edge, NJ, 1995 | DOI | MR | Zbl

[21] Gérard P., Kappeler T., On the integrability of the Benjamin–Ono equation on the torus, arXiv: 1905.01849

[22] Goldstone J., Jackiw R., “Quantization of nonlinear waves”, Phys. Rev. D, 11 (1975), 1486–1498 | DOI | MR

[23] Guillemin V., Sternberg S., “The Gelfand–Cetlin system and quantization of the complex flag manifolds”, J. Funct. Anal., 52 (1983), 106–128 | DOI | MR | Zbl

[24] Janson S., Gaussian Hilbert spaces, Cambridge Tracts in Mathematics, 129, Cambridge University Press, Cambridge, 1997 | DOI | MR | Zbl

[25] Jevicki A., “Nonperturbative collective field theory”, Nuclear Phys. B, 376 (1992), 75–98 | DOI | MR

[26] Kac V., Vertex algebras for beginners, University Lecture Series, 10, 2nd ed., Amer. Math. Soc., Providence, RI, 1998 | DOI | MR | Zbl

[27] Karabali D., Polychronakos A. P., “Exact operator Hamiltonians and interactions in the droplet bosonization method”, Phys. Rev. D, 90 (2014), 025002, 11 pp., arXiv: 1204.2788 | DOI

[28] Kerov S. V., “Interlacing measures”, Kirillov's Seminar on Representation Theory, Amer. Math. Soc. Transl. Ser. 2, 181, Amer. Math. Soc., Providence, RI, 1998, 35–83 | DOI | MR | Zbl

[29] Kerov S. V., “Anisotropic Young diagrams and symmetric Jack functions”, Funct. Anal. Appl., 34 (2000), 41–51, arXiv: math.CO/9712267 | DOI | MR | Zbl

[30] Kirillov A. A., “Geometric quantization”, Dynamical Systems, IV, Encyclopaedia Math. Sci., 4, Springer, Berlin, 2001, 139–176 | DOI | MR

[31] Korepin V. E., Faddeev L. D., “Quantization of solitons”, Theoret. and Math. Phys., 25 (1975), 1039–1049 | DOI | MR

[32] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995 | MR

[33] Matsuno Y., “Interaction of the Benjamin–Ono solitons”, J. Phys. A: Math. Gen., 13 (1980), 1519–1536 | DOI | MR | Zbl

[34] Maulik D., Okounkov A., Quantum groups and quantum cohomology, Astérisque, 408, 2019, ix+209 pp., arXiv: 1211.1287 | MR | Zbl

[35] Mironov A., Morozov A., “Nekrasov functions and exact Bohr–Sommerfeld integrals”, J. High Energy Phys., 2010:4 (2010), 040, 15 pp., arXiv: 0910.5670 | DOI | MR | Zbl

[36] Molinet L., “Global well-posedness in $L^2$ for the periodic Benjamin–Ono equation”, Amer. J. Math., 130 (2008), 635–683, arXiv: math.AP/0601217 | DOI | MR | Zbl

[37] Moll A., Random partitions and the quantum Benjamin–Ono hierarchy, Ph.D. Thesis, Massachusetts Institute of Technology, 2016, arXiv: 1508.03063 | MR

[38] Moll A., “Finite gap conditions and small dispersion asymptotics for the classical periodic Benjamin–Ono equation”, Quart. Appl. Math. (to appear) , arXiv: 1901.04089

[39] Moll A., Soliton quantization and random partitions, in preparation

[40] Nazarov M., Sklyanin E., “Integrable hierarchy of the quantum Benjamin–Ono equation”, SIGMA, 9 (2013), 078, 14 pp., arXiv: 1309.6464 | DOI | MR | Zbl

[41] Nazarov M., Sklyanin E., “Sekiguchi–Debiard operators at infinity”, Comm. Math. Phys., 324 (2013), 831–849, arXiv: 1212.2781 | DOI | MR | Zbl

[42] Nekrasov N. A., “Seiberg–Witten prepotential from instanton counting”, Adv. Theor. Math. Phys., 7 (2003), 831–864, arXiv: hep-th/0206161 | DOI | MR | Zbl

[43] Nekrasov N., Pestun V., Shatashvili S., “Quantum geometry and quiver gauge theories”, Comm. Math. Phys., 357 (2018), 519–567, arXiv: 1312.6689 | DOI | MR | Zbl

[44] Nekrasov N. A., Shatashvili S. L., “Quantization of integrable systems and four dimensional gauge theories”, XVIth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2010, 265–289, arXiv: 0908.4052 | DOI | MR | Zbl

[45] Okounkov A., “Infinite wedge and random partitions”, Selecta Math. (N.S.), 7 (2001), 57–81, arXiv: math.RT/9907127 | DOI | MR | Zbl

[46] Okounkov A., On the crossroads of enumerative geometry and geometric representation theory, arXiv: 1801.09818 | MR

[47] Ono H., “Algebraic solitary waves in stratified fluids”, J. Phys. Soc. Japan, 39 (1975), 1082–1091 | DOI | MR | Zbl

[48] Polychronakos A. P., “Waves and solitons in the continuum limit of the Calogero–Sutherland model”, Phys. Rev. Lett., 74 (1995), 5153–5157, arXiv: hep-th/9411054 | DOI | MR | Zbl

[49] Ruijsenaars S. N. M., “Systems of Calogero–Moser type”, Particles and Fields (Banff, AB, 1994), CRM Ser. Math. Phys., Springer, New York, 1999, 251–352 | DOI | MR

[50] Satsuma J., Ishimori Y., “Periodic wave and rational soliton solutions of the Benjamin–Ono equation”, J. Phys. Soc. Japan, 46 (1979), 681–687 | DOI | MR

[51] Saut J.-C., Benjamin–Ono and intermediate long wave equation: modeling, IST and PDE, arXiv: 1811.08652

[52] Sergeev A. N., Veselov A. P., “Dunkl operators at infinity and Calogero–Moser systems”, Int. Math. Res. Not., 2015 (2015), 10959–10986, arXiv: 1311.0853 | DOI | MR | Zbl

[53] Sergeev A. N., Veselov A. P., “Jack–Laurent symmetric functions”, Proc. Lond. Math. Soc., 111 (2015), 63–92, arXiv: 1310.2462 | DOI | MR | Zbl

[54] Sklyanin E. K., Takhtadzhyan L. A., Faddeev L. D., “Quantum inverse problem. I”, Theoret. and Math. Phys., 40 (1979), 688–706 | DOI | MR

[55] Stanley R. P., “Some combinatorial properties of Jack symmetric functions”, Adv. Math., 77 (1989), 76–115 | DOI | MR | Zbl

[56] Sutherland B., Beautiful models: 70 years of exactly solved quantum many-body problems, World Sci. Publ. Co., Inc., River Edge, NJ, 2004 | DOI | MR | Zbl

[57] Takhtajan L. A., Quantum mechanics for mathematicians, Graduate Studies in Mathematics, 95, Amer. Math. Soc., Providence, RI, 2008 | DOI | MR | Zbl

[58] Takhtajan L. A., Alekseev A. Yu., Aref'eva I. Ya., Semenov-Tian-Shansky M. A., Sklyanin E. K., Smirnov F. A., Shatashvili S. L., “Scientific heritage of L. D. Faddeev”, Russian Math. Surveys, 72 (2017), 977–1081 | DOI | MR | Zbl

[59] Vũ Ngoc S., “Quantum monodromy and Bohr–Sommerfeld rules”, Lett. Math. Phys., 55 (2001), 205–217 | DOI | MR | Zbl

[60] Wiegmann P., “Nonlinear hydrodynamics and fractionally quantized solitons at the fractional quantum Hall edge”, Phys. Rev. Lett., 108 (2012), 206810, 5 pp., arXiv: 1112.0810 | DOI

[61] Woodhouse N. M. J., Geometric quantization, Oxford Mathematical Monographs, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1992 | MR