Fun Problems in Geometry and Beyond
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss fun problems, vaguely related to notions and theorems of a course in differential geometry. This paper can be regarded as a weekend “treasure chest” supplementing the course weekday lecture notes. The problems and solutions are not original, while their relation to the course might be so.
Keywords: clocks, spot it!, hunters, parking, frames, algebra, geometry.
Mots-clés : tangents
@article{SIGMA_2019_15_a96,
     author = {Boris Khesin and Serge Tabachnikov},
     title = {Fun {Problems} in {Geometry} and {Beyond}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a96/}
}
TY  - JOUR
AU  - Boris Khesin
AU  - Serge Tabachnikov
TI  - Fun Problems in Geometry and Beyond
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a96/
LA  - en
ID  - SIGMA_2019_15_a96
ER  - 
%0 Journal Article
%A Boris Khesin
%A Serge Tabachnikov
%T Fun Problems in Geometry and Beyond
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a96/
%G en
%F SIGMA_2019_15_a96
Boris Khesin; Serge Tabachnikov. Fun Problems in Geometry and Beyond. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a96/

[1] Akopyan A., Avvakumov S., “Any cyclic quadrilateral can be inscribed in any closed convex smooth curve”, Forum Math. Sigma, 6 (2018), e7, 9 pp., arXiv: 1712.10205 | DOI | MR | Zbl

[2] Akopyan A. V., Bobenko A. I., “Incircular nets and confocal conics”, Trans. Amer. Math. Soc., 370 (2018), 2825–2854, arXiv: 1602.04637 | DOI | MR | Zbl

[3] Arnold V. I., Arnold's problems, Springer-Verlag, Berlin, 2004 | DOI | MR | Zbl

[4] Arnold V. I., “Lobachevsky triangle altitudes theorem as the Jacobi identity in the Lie algebra of quadratic forms on symplectic plane”, J. Geom. Phys., 53 (2005), 421–427 | DOI | MR | Zbl

[5] Arnold V. I., Mathematical understanding of nature. Essays on amazing physical phenomena and their understanding by mathematicians, Amer. Math. Soc., Providence, RI, 2014 | DOI | MR | Zbl

[6] Arnold V. I., Problems for children from 5 to 15, , 2014 https://imaginary.org/background-material/school-taskbook-from-5-to-15

[7] Arnold V. I., Gusein-Zade S. M., Varchenko A. N., Singularities of differentiable maps, v. I, Monographs in Mathematics, 82, The classification of critical points, caustics and wave fronts, Birkhäuser Boston, Inc., Boston, MA, 1985 | DOI | MR | Zbl

[8] Baritompa B., Löwen R., Polster B., Ross M., “Mathematical table-turning revisited”, Math. Intelligencer, 29 (2007), 49–58 | DOI | MR | Zbl

[9] Demaine E. D., Demaine M. L., Minsky Y. N., Mitchell J. S.B., Rivest R. L., Pǎtraşcu M., “Picture-hanging puzzles”, Theory Comput. Syst., 54 (2014), 531–550, arXiv: 1203.3602 | DOI | MR | Zbl

[10] Fenn R., “The table theorem”, Bull. London Math. Soc., 2 (1970), 73–76 | DOI | MR | Zbl

[11] Fuchs D., Tabachnikov S., Mathematical omnibus. Thirty lectures on classic mathematics, Amer. Math. Soc., Providence, RI, 2007 | DOI | MR | Zbl

[12] Fuchs D., Tabachnikov S., “Self-dual polygons and self-dual curves”, Funct. Anal. Other Math., 2 (2009), 203–220, arXiv: 0707.1048 | DOI | MR | Zbl

[13] Glutsyuk A., Izmestiev I., Tabachnikov S., “Four equivalent properties of integrable billiards”, Israel J. Math. (to appear) , arXiv: 1909.09028

[14] Gray A., Tubes, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1990 | MR

[15] Halpern B., Weaver C., “Inverting a cylinder through isometric immersions and isometric embeddings”, Trans. Amer. Math. Soc., 230 (1977), 41–70 | DOI | MR | Zbl

[16] Izmestiev I., Tabachnikov S., “Ivory's theorem revisited”, J. Integrable Syst., 2 (2017), xyx006, 36 pp., arXiv: 1610.01384 | DOI | MR | Zbl

[17] Izosimov A., The pentagram map, Poncelet polygons, and commuting difference operators, arXiv: 1906.10749 | MR

[18] Khovanova T., “Martin Gardner's mistake”, College Math. J., 43 (2012), 20–24 , arXiv: http://blog.tanyakhovanova.com1102.0173 | DOI | MR | Zbl

[19] Kronheimer E. H., Kronheimer P. B., “The tripos problem”, J. London Math. Soc., 24 (1981), 182–192 | DOI | MR | Zbl

[20] Livesay G. R., “On a theorem of F.J. Dyson”, Ann. of Math., 59 (1954), 227–229 | DOI | MR

[21] Matschke B., “A survey on the square peg problem”, Notices Amer. Math. Soc., 61 (2014), 346–352 | DOI | MR | Zbl

[22] Meyerson M. D., “Remarks on Fenn's “the table theorem” and Zaks' “the chair theorem””, Pacific J. Math., 110 (1984), 167–169 | DOI | MR | Zbl

[23] Michor P. W., Topics in differential geometry, Graduate Studies in Mathematics, 93, Amer. Math. Soc., Providence, RI, 2008 | DOI | MR | Zbl

[24] Raphaël E., di Meglio J.-M., Berger M., Calabi E., “Convex particles at interfaces”, J. Phys. I France, 2 (1992), 571–579 | DOI

[25] Santaló L. A., Integral geometry and geometric probability, v. 1, Encyclopedia of Mathematics and its Applications, Addison-Wesley Publishing Co., Reading, Mass.–London–Amsterdam, 1976 | MR | Zbl

[26] Schwartz R., “The pentagram map”, Experiment. Math., 1 (1992), 71–81 | MR | Zbl

[27] Schwartz R., “The Poncelet grid”, Adv. Geom., 7 (2007), 157–175 | DOI | MR | Zbl

[28] Schwartz R., Tabachnikov S., “Elementary surprises in projective geometry”, Math. Intelligencer, 32 (2010), 31–34, arXiv: 0910.1952 | DOI | MR | Zbl

[29] Tabachnikov S., Geometry and billiards, Student Mathematical Library, 30, Amer. Math. Soc., Providence, RI, 2005 | DOI | MR | Zbl

[30] Tabachnikov S., “The (un)equal tangents problem”, Amer. Math. Monthly, 119 (2012), 398–405, arXiv: 1102.5577 | DOI | MR | Zbl

[31] Tabachnikov S., “Kasner meets Poncelet”, Math. Intelligencer, 41 (2019), 56–59, arXiv: 1707.09267 | DOI | MR | Zbl

[32] Tabachnikov S., Dogru F., “Dual billiards”, Math. Intelligencer, 27 (2005), 18–25 | DOI | MR | Zbl