Cohomology of Restricted Filiform Lie Algebras ${\mathfrak m}_2^\lambda(p)$
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the $p$-dimensional filiform Lie algebra ${\mathfrak m}_2(p)$ over a field ${\mathbb F}$ of prime characteristic $p\ge 5$ with nonzero Lie brackets $[e_1,e_i] = e_{i+1}$ for $1$ and $[e_2,e_i]=e_{i+2}$ for $2$, we show that there is a family ${\mathfrak m}_2^{\lambda}(p)$ of restricted Lie algebra structures parameterized by elements $\lambda \in {\mathbb F}^p$. We explicitly describe bases for the ordinary and restricted 1- and 2-cohomology spaces with trivial coefficients, and give formulas for the bracket and $[p]$-operations in the corresponding restricted one-dimensional central extensions.
Keywords: restricted Lie algebra, central extension, cohomology, filiform Lie algebra.
@article{SIGMA_2019_15_a94,
     author = {Tyler J. Evans and Alice Fialowski},
     title = {Cohomology of {Restricted} {Filiform} {Lie} {Algebras} ${\mathfrak m}_2^\lambda(p)$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a94/}
}
TY  - JOUR
AU  - Tyler J. Evans
AU  - Alice Fialowski
TI  - Cohomology of Restricted Filiform Lie Algebras ${\mathfrak m}_2^\lambda(p)$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a94/
LA  - en
ID  - SIGMA_2019_15_a94
ER  - 
%0 Journal Article
%A Tyler J. Evans
%A Alice Fialowski
%T Cohomology of Restricted Filiform Lie Algebras ${\mathfrak m}_2^\lambda(p)$
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a94/
%G en
%F SIGMA_2019_15_a94
Tyler J. Evans; Alice Fialowski. Cohomology of Restricted Filiform Lie Algebras ${\mathfrak m}_2^\lambda(p)$. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a94/

[1] Caranti A., Mattarei S., Newman M. F., “Graded Lie algebras of maximal class”, Trans. Amer. Math. Soc., 349 (1997), 4021–4051 | DOI | MR | Zbl

[2] Caranti A., Newman M. F., “Graded Lie algebras of maximal class. II”, J. Algebra, 229 (2000), 750–784, arXiv: math.RA/9906160 | DOI | MR | Zbl

[3] Chevalley C., Eilenberg S., “Cohomology theory of Lie groups and Lie algebras”, Trans. Amer. Math. Soc., 63 (1948), 85–124 | DOI | MR | Zbl

[4] Evans T. J., Fialowski A., “Restricted one-dimensional central extensions of restricted simple Lie algebras”, Linear Algebra Appl., 513 (2017), 96–102, arXiv: 1506.09025 | DOI | MR | Zbl

[5] Evans T. J., Fialowski A., “Restricted one-dimensional central extensions of the restricted filiform Lie algebras ${\mathfrak m}_0^\lambda(p)$”, Linear Algebra Appl., 565 (2019), 244–257, arXiv: 1801.08178 | DOI | MR | Zbl

[6] Evans T. J., Fialowski A., Penkava M., “Restricted cohomology of modular Witt algebras”, Proc. Amer. Math. Soc., 144 (2016), 1877–1886, arXiv: 1502.04531 | DOI | MR | Zbl

[7] Evans T. J., Fuchs D., “A complex for the cohomology of restricted Lie algebras”, J. Fixed Point Theory Appl., 3 (2008), 159–179 | DOI | MR | Zbl

[8] Feldvoss J., “On the cohomology of restricted Lie algebras”, Comm. Algebra, 19 (1991), 2865–2906 | DOI | MR | Zbl

[9] Fialowski A., “On the classification of graded {L}ie algebras with two generators”, Moscow Univ. Math. Bull., 38 (1983), 76–79 | MR | Zbl

[10] Fuks D. B., Cohomology of infinite-dimensional Lie algebras, Contemporary Soviet Mathematics, Consultants Bureau, New York, 1986 | MR | Zbl

[11] Hochschild G., “Cohomology of restricted Lie algebras”, Amer. J. Math., 76 (1954), 555–580 | DOI | MR | Zbl

[12] Jacobson N., Lie algebras, Interscience Tracts in Pure and Applied Mathematics, 10, Interscience Publishers, New York–London, 1962 | MR | Zbl

[13] Jurman G., “Graded Lie algebras of maximal class. III”, J. Algebra, 284 (2005), 435–461 | DOI | MR | Zbl

[14] Millionschikov D. V., “Graded filiform Lie algebras and symplectic nilmanifolds”, Geometry, Topology, and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 212, Amer. Math. Soc., Providence, RI, 2004, 259–279, arXiv: math.RA/0205042 | DOI | MR | Zbl

[15] Strade H., Farnsteiner R., Modular Lie algebras and their representations, Monographs and Textbooks in Pure and Applied Mathematics, 116, Marcel Dekker, Inc., New York, 1988 | MR | Zbl