@article{SIGMA_2019_15_a93,
author = {Bla\.zej M. Szablikowski},
title = {Bi-Hamiltonian {Systems} in (2+1) and {Higher} {Dimensions} {Defined} by {Novikov} {Algebras}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a93/}
}
TY - JOUR AU - Blażej M. Szablikowski TI - Bi-Hamiltonian Systems in (2+1) and Higher Dimensions Defined by Novikov Algebras JO - Symmetry, integrability and geometry: methods and applications PY - 2019 VL - 15 UR - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a93/ LA - en ID - SIGMA_2019_15_a93 ER -
Blażej M. Szablikowski. Bi-Hamiltonian Systems in (2+1) and Higher Dimensions Defined by Novikov Algebras. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a93/
[1] Arnold V. I., Khesin B. A., Topological methods in hydrodynamics, Applied Mathematical Sciences, 125, Springer-Verlag, New York, 1998 | DOI | MR | Zbl
[2] Bai C., Meng D., “The classification of Novikov algebras in low dimensions”, J. Phys. A: Math. Gen., 34 (2001), 1581–1594 | DOI | MR | Zbl
[3] Bai C., Meng D., “Transitive Novikov algebras on four-dimensional nilpotent Lie algebras”, Internat. J. Theoret. Phys., 40 (2001), 1761–1768 | DOI | MR | Zbl
[4] Balinskiĭ A.A., Novikov S. P., “Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras”, Soviet Math. Dokl., 32 (1985), 228–231 | MR | Zbl
[5] Błaszak M., Multi-{H}amiltonian theory of dynamical systems, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1998 | DOI | MR
[6] Błaszak M., Sergyeyev A., “Contact Lax pairs and associated $(3+1)$-dimensional integrable dispersionless systems”, Nonlinear Systems and Their Remarkable Mathematical Structures, v. 2, eds. N. Euler, M.C. Nucci, Chapman and Hall/CRC (to appear) , arXiv: 1901.05181
[7] Burde D., de Graaf W., “Classification of Novikov algebras”, Appl. Algebra Engrg. Comm. Comput., 24 (2013), 1–15, arXiv: 1106.5954 | DOI | MR | Zbl
[8] Camassa R., Holm D. D., “An integrable shallow water equation with peaked solitons”, Phys. Rev. Lett., 71 (1993), 1661–1664, arXiv: patt-sol/9305002 | DOI | MR | Zbl
[9] Dubrovin B. A., Novikov S. P., “Hamiltonian formalism of one-dimensional systems of the hydrodynamic type and the Bogolyubov–Whitham averaging method”, Soviet Math. Dokl., 27 (1983), 665–669 | MR | Zbl
[10] Dubrovin B. A., Novikov S. P., “On Poisson brackets of hydrodynamic type”, Soviet Math. Dokl., 30 (1984), 651–654 | MR | Zbl
[11] Ferapontov E. V., Lorenzoni P., Savoldi A., “Hamiltonian operators of Dubrovin–Novikov type in 2D”, Lett. Math. Phys., 105 (2015), 341–377, arXiv: 1312.0475 | DOI | MR | Zbl
[12] Gel'fand I. M., Dorfman I. Ya., “Hamiltonian operators and algebraic structures related to them”, Funct. Anal. Appl., 13 (1979), 248–262 | DOI | MR
[13] Khesin B., Wendt R., The geometry of infinite-dimensional groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 51, Springer-Verlag, Berlin, 2009 | DOI | MR | Zbl
[14] Mokhov O. I., “Dubrovin–Novikov type Poisson brackets (DN-brackets)”, Funct. Anal. Appl., 22 (1988), 336–338 | DOI | MR | Zbl
[15] Mokhov O. I., “The classification of nonsingular multidimensional Dubrovin–Novikov brackets”, Funct. Anal. Appl., 42 (2008), 33–44, arXiv: math.DG/0611785 | DOI | MR | Zbl
[16] Olver P. J., Applications of Lie groups to differential equations, Graduate Texts in Mathematics, 107, 2nd ed., Springer-Verlag, New York, 1993 | DOI | MR | Zbl
[17] Ovsienko V., Roger C., “Looped cotangent Virasoro algebra and non-linear integrable systems in dimension $2+1$”, Comm. Math. Phys., 273 (2007), 357–378, arXiv: math-ph/0602043 | DOI | MR | Zbl
[18] Sergyeyev A., Szablikowski B. M., “Central extensions of cotangent universal hierarchy: $(2+1)$-dimensional bi-Hamiltonian systems”, Phys. Lett. A, 372 (2008), 7016–7023, arXiv: 0807.1294 | DOI | MR | Zbl
[19] Strachan I. A. B., Darboux coordinates for Hamiltonian structures defined by Novikov algebras, arXiv: 1804.07073
[20] Strachan I. A. B., “A construction of multidimensional Dubrovin–Novikov brackets”, J. Nonlinear Math. Phys., 26 (2019), 202–213, arXiv: 1806.10382 | DOI | MR | Zbl
[21] Strachan I. A. B., Szablikowski B. M., “Novikov algebras and a classification of multicomponent Camassa–Holm equations”, Stud. Appl. Math., 133 (2014), 84–117, arXiv: 1309.3188 | DOI | MR | Zbl
[22] Strachan I. A. B., Zuo D., “Frobenius manifolds and Frobenius algebra-valued integrable systems”, Lett. Math. Phys., 107 (2017), 997–1026, arXiv: 1403.0021 | DOI | MR | Zbl