Bi-Hamiltonian Systems in (2+1) and Higher Dimensions Defined by Novikov Algebras
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The results from the article [Strachan I.A.B., Szablikowski B.M., Stud. Appl. Math. 133 (2014), 84–117] are extended over consideration of central extensions allowing the introducing of additional independent variables. Algebraic conditions associated to the first-order central extension with respect to additional independent variables are derived. As result $(2+1)$- and, in principle, higher-dimensional multicomponent bi-Hamiltonian systems are constructed. Necessary classification of the central extensions for low-dimensional Novikov algebras is performed and the theory is illustrated by significant $(2+1)$- and $(3+1)$-dimensional examples.
Keywords: Novikov algebras, $(2+1)$- and $(3+1)$-dimensional integrable systems, bi-Hamiltonian structures, central extensions.
@article{SIGMA_2019_15_a93,
     author = {Bla\.zej M. Szablikowski},
     title = {Bi-Hamiltonian {Systems} in (2+1) and {Higher} {Dimensions} {Defined} by {Novikov} {Algebras}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a93/}
}
TY  - JOUR
AU  - Blażej M. Szablikowski
TI  - Bi-Hamiltonian Systems in (2+1) and Higher Dimensions Defined by Novikov Algebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a93/
LA  - en
ID  - SIGMA_2019_15_a93
ER  - 
%0 Journal Article
%A Blażej M. Szablikowski
%T Bi-Hamiltonian Systems in (2+1) and Higher Dimensions Defined by Novikov Algebras
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a93/
%G en
%F SIGMA_2019_15_a93
Blażej M. Szablikowski. Bi-Hamiltonian Systems in (2+1) and Higher Dimensions Defined by Novikov Algebras. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a93/

[1] Arnold V. I., Khesin B. A., Topological methods in hydrodynamics, Applied Mathematical Sciences, 125, Springer-Verlag, New York, 1998 | DOI | MR | Zbl

[2] Bai C., Meng D., “The classification of Novikov algebras in low dimensions”, J. Phys. A: Math. Gen., 34 (2001), 1581–1594 | DOI | MR | Zbl

[3] Bai C., Meng D., “Transitive Novikov algebras on four-dimensional nilpotent Lie algebras”, Internat. J. Theoret. Phys., 40 (2001), 1761–1768 | DOI | MR | Zbl

[4] Balinskiĭ A.A., Novikov S. P., “Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras”, Soviet Math. Dokl., 32 (1985), 228–231 | MR | Zbl

[5] Błaszak M., Multi-{H}amiltonian theory of dynamical systems, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1998 | DOI | MR

[6] Błaszak M., Sergyeyev A., “Contact Lax pairs and associated $(3+1)$-dimensional integrable dispersionless systems”, Nonlinear Systems and Their Remarkable Mathematical Structures, v. 2, eds. N. Euler, M.C. Nucci, Chapman and Hall/CRC (to appear) , arXiv: 1901.05181

[7] Burde D., de Graaf W., “Classification of Novikov algebras”, Appl. Algebra Engrg. Comm. Comput., 24 (2013), 1–15, arXiv: 1106.5954 | DOI | MR | Zbl

[8] Camassa R., Holm D. D., “An integrable shallow water equation with peaked solitons”, Phys. Rev. Lett., 71 (1993), 1661–1664, arXiv: patt-sol/9305002 | DOI | MR | Zbl

[9] Dubrovin B. A., Novikov S. P., “Hamiltonian formalism of one-dimensional systems of the hydrodynamic type and the Bogolyubov–Whitham averaging method”, Soviet Math. Dokl., 27 (1983), 665–669 | MR | Zbl

[10] Dubrovin B. A., Novikov S. P., “On Poisson brackets of hydrodynamic type”, Soviet Math. Dokl., 30 (1984), 651–654 | MR | Zbl

[11] Ferapontov E. V., Lorenzoni P., Savoldi A., “Hamiltonian operators of Dubrovin–Novikov type in 2D”, Lett. Math. Phys., 105 (2015), 341–377, arXiv: 1312.0475 | DOI | MR | Zbl

[12] Gel'fand I. M., Dorfman I. Ya., “Hamiltonian operators and algebraic structures related to them”, Funct. Anal. Appl., 13 (1979), 248–262 | DOI | MR

[13] Khesin B., Wendt R., The geometry of infinite-dimensional groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 51, Springer-Verlag, Berlin, 2009 | DOI | MR | Zbl

[14] Mokhov O. I., “Dubrovin–Novikov type Poisson brackets (DN-brackets)”, Funct. Anal. Appl., 22 (1988), 336–338 | DOI | MR | Zbl

[15] Mokhov O. I., “The classification of nonsingular multidimensional Dubrovin–Novikov brackets”, Funct. Anal. Appl., 42 (2008), 33–44, arXiv: math.DG/0611785 | DOI | MR | Zbl

[16] Olver P. J., Applications of Lie groups to differential equations, Graduate Texts in Mathematics, 107, 2nd ed., Springer-Verlag, New York, 1993 | DOI | MR | Zbl

[17] Ovsienko V., Roger C., “Looped cotangent Virasoro algebra and non-linear integrable systems in dimension $2+1$”, Comm. Math. Phys., 273 (2007), 357–378, arXiv: math-ph/0602043 | DOI | MR | Zbl

[18] Sergyeyev A., Szablikowski B. M., “Central extensions of cotangent universal hierarchy: $(2+1)$-dimensional bi-Hamiltonian systems”, Phys. Lett. A, 372 (2008), 7016–7023, arXiv: 0807.1294 | DOI | MR | Zbl

[19] Strachan I. A. B., Darboux coordinates for Hamiltonian structures defined by Novikov algebras, arXiv: 1804.07073

[20] Strachan I. A. B., “A construction of multidimensional Dubrovin–Novikov brackets”, J. Nonlinear Math. Phys., 26 (2019), 202–213, arXiv: 1806.10382 | DOI | MR | Zbl

[21] Strachan I. A. B., Szablikowski B. M., “Novikov algebras and a classification of multicomponent Camassa–Holm equations”, Stud. Appl. Math., 133 (2014), 84–117, arXiv: 1309.3188 | DOI | MR | Zbl

[22] Strachan I. A. B., Zuo D., “Frobenius manifolds and Frobenius algebra-valued integrable systems”, Lett. Math. Phys., 107 (2017), 997–1026, arXiv: 1403.0021 | DOI | MR | Zbl