@article{SIGMA_2019_15_a92,
author = {Rich\'ard Rim\'anyi and Andrey Smirnov and Alexander Varchenko and Zijun Zhou},
title = {Three-Dimensional {Mirror} {Self-Symmetry} of the {Cotangent} {Bundle} of the {Full} {Flag} {Variety}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a92/}
}
TY - JOUR AU - Richárd Rimányi AU - Andrey Smirnov AU - Alexander Varchenko AU - Zijun Zhou TI - Three-Dimensional Mirror Self-Symmetry of the Cotangent Bundle of the Full Flag Variety JO - Symmetry, integrability and geometry: methods and applications PY - 2019 VL - 15 UR - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a92/ LA - en ID - SIGMA_2019_15_a92 ER -
%0 Journal Article %A Richárd Rimányi %A Andrey Smirnov %A Alexander Varchenko %A Zijun Zhou %T Three-Dimensional Mirror Self-Symmetry of the Cotangent Bundle of the Full Flag Variety %J Symmetry, integrability and geometry: methods and applications %D 2019 %V 15 %U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a92/ %G en %F SIGMA_2019_15_a92
Richárd Rimányi; Andrey Smirnov; Alexander Varchenko; Zijun Zhou. Three-Dimensional Mirror Self-Symmetry of the Cotangent Bundle of the Full Flag Variety. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a92/
[1] Aganagic M., Okounkov A., Elliptic stable envelopes, arXiv: 1604.00423
[2] Berwick-Evans D., Tripathy A., A geometric model for complex analytic equivariant elliptic cohomology, arXiv: 1805.04146
[3] Braden T., Licata A., Proudfoot N., Webster B., “Gale duality and Koszul duality”, Adv. Math., 225 (2010), 2002–2049 | DOI | MR | Zbl
[4] Braden T., Licata A., Proudfoot N., Webster B., “Quantizations of conical symplectic resolutions II: category $\mathcal O$ and symplectic duality (with an appendix by I Losev)”, Astérisque, 384, 2016, 75–179, arXiv: 1407.0964 | MR
[5] Braverman A., Finkelberg M., Nakajima H., “Towards a mathematical definition of Coulomb branches of 3-dimensional ${\mathcal N}=4$ gauge theories, II”, Adv. Theor. Math. Phys., 22 (2018), 1071–1147, arXiv: 1601.03586 | DOI | MR
[6] Bullimore M., Dimofte T., Gaiotto D., “The Coulomb branch of 3d $\mathcal{N}=4$ theories”, Comm. Math. Phys., 354 (2017), 671–751, arXiv: 1503.04817 | DOI | MR | Zbl
[7] Bullimore M., Dimofte T., Gaiotto D., Hilburn J., Boundaries, mirror symmetry, and symplectic duality in 3d $\mathcal{N}=4$ gauge theory, J. High Energy Phys., 2016:10 (2016), 108, 192 pp., arXiv: 1603.08382 | DOI | MR | Zbl
[8] Cherednik I., Double affine Hecke algebras, London Mathematical Society Lecture Note Series, 319, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl
[9] de Boer J., Hori K., Ooguri H., Oz Y., “Mirror symmetry in three-dimensional gauge theories, quivers and D-branes”, Nuclear Phys. B, 493 (1997), 101–147, arXiv: hep-th/9611063 | DOI | MR | Zbl
[10] de Boer J., Hori K., Ooguri H., Oz Y., Yin Z., “Mirror symmetry in three-dimensional gauge theories, ${\rm SL}(2,{\mathbb Z})$ and $D$-brane moduli spaces”, Nuclear Phys. B, 493 (1997), 148–176, arXiv: hep-th/9612131 | DOI | MR | Zbl
[11] Felder G., Tarasov V., Varchenko A., “Solutions of the elliptic qKZB equations and Bethe ansatz. I”, Topics in Singularity Theory, V.I. Arnold's 60th Anniversary Collection, Amer. Math. Soc. Transl. Ser. 2, 180, Amer. Math. Soc., Providence, RI, 1997, 45–75, arXiv: q-alg/9606005 | DOI | MR | Zbl
[12] Felder G., Tarasov V., Varchenko A., “Monodromy of solutions of the elliptic quantum Knizhnik–Zamolodchikov–Bernard difference equations”, Internat. J. Math., 10 (1999), 943–975, arXiv: q-alg/9705017 | DOI | MR | Zbl
[13] Gaiotto D., Koroteev P., “On three dimensional quiver gauge theories and integrability”, J. High Energy Phys., 2013:5 (2013), 126, 59 pp., arXiv: 1304.0779 | DOI | MR | Zbl
[14] Gaiotto D., Witten E., “$S$-duality of boundary conditions in $\mathcal{N}=4$ super Yang–Mills theory”, Adv. Theor. Math. Phys., 13 (2009), 721–896, arXiv: 0807.3720 | DOI | MR | Zbl
[15] Ganter N., “The elliptic Weyl character formula”, Compos. Math., 150 (2014), 1196–1234, arXiv: 1206.0528 | DOI | MR | Zbl
[16] Gepner D. J., Homotopy topoi and equivariant elliptic cohomology, Ph.D. Thesis, University of Illinois at Urbana-Champaign, 2006 | MR
[17] Ginzburg V., Vasserot E., “Algèbres elliptiques et $K$-théorie équivariante”, C. R. Acad. Sci. Paris Sér. I Math., 319 (1994), 539–543 | MR | Zbl
[18] Goresky M., Kottwitz R., MacPherson R., “Equivariant cohomology, Koszul duality, and the localization theorem”, Invent. Math., 131 (1998), 25–83 | DOI | MR | Zbl
[19] Grojnowski I., “Delocalised equivariant elliptic cohomology”, Elliptic Cohomology, London Math. Soc. Lecture Note Ser., 342, Cambridge University Press, Cambridge, 2007, 114–121 | DOI | MR | Zbl
[20] Hanany A., Witten E., “Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics”, Nuclear Phys. B, 492 (1997), 152–190, arXiv: hep-th/9611230 | DOI | MR
[21] Intriligator K., Seiberg N., “Mirror symmetry in three-dimensional gauge theories”, Phys. Lett. B, 387 (1996), 513–519, arXiv: hep-th/9607207 | DOI | MR
[22] Koroteev P., A-type quiver varieties and ADHM moduli spaces, arXiv: 1805.00986
[23] Koroteev P., Pushkar P. P., Smirnov A., Zeitlin A. M., Quantum K-theory of quiver varieties and many-body systems, arXiv: 1705.10419
[24] Lurie J., “A survey of elliptic cohomology”, Algebraic Topology, Abel Symp., 4, Springer, Berlin, 2009, 219–277 | DOI | MR | Zbl
[25] Maulik D., Okounkov A., Quantum groups and quantum cohomology, Astérisque, 408, 2019, ix+209 pp., arXiv: 1211.1287 | MR | Zbl
[26] McGerty K., Nevins T., “Kirwan surjectivity for quiver varieties”, Invent. Math., 212 (2018), 161–187, arXiv: 1610.08121 | DOI | MR | Zbl
[27] Nakajima H., “Towards a mathematical definition of Coulomb branches of 3-dimensional $\mathcal{N}=4$ gauge theories, I”, Adv. Theor. Math. Phys., 20 (2016), 595–669, arXiv: 1503.03676 | DOI | MR | Zbl
[28] Nakajima H., “Introduction to quiver varieties – for ring and representation theorists”, Proceedings of the 49th Symposium on Ring Theory and Representation Theory, Symp. Ring Theory Represent. Theory Organ. Comm. (Shimane, 2017), 96–114, arXiv: 1611.10000 | MR | Zbl
[29] Nakajima H., “Introduction to a provisional mathematical definition of Coulomb branches of 3-dimensional $\mathcal{N}=4$ gauge theories”, Modern Geometry: a Celebration of the Work of Simon Donaldson, Proc. Sympos. Pure Math., 99, Amer. Math. Soc., Providence, RI, 2018, 193–211, arXiv: 1706.05154 | MR
[30] Okounkov A., “Lectures on K-theoretic computations in enumerative geometry”, Geometry of Moduli Spaces and Representation Theory, IAS/Park City Math. Ser., 24, Amer. Math. Soc., Providence, RI, 2017, 251–380, arXiv: 1512.07363 | DOI | MR | Zbl
[31] Okounkov A., Smirnov A., Quantum difference equation for Nakajima varieties, arXiv: 1602.09007
[32] Rimányi R., Smirnov A., Varchenko A., Zhou Z., 3d mirror symmetry and elliptic stable envelopes, arXiv: 1902.03677
[33] Rimányi R., Tarasov V., Varchenko A., “Partial flag varieties, stable envelopes, and weight functions”, Quantum Topol., 6 (2015), 333–364, arXiv: 1212.6240 | DOI | MR | Zbl
[34] Rimányi R., Tarasov V., Varchenko A., “Elliptic and $K$-theoretic stable envelopes and Newton polytopes”, Selecta Math. (N.S.), 25 (2019), 16, 43 pp., arXiv: 1705.09344 | DOI | MR | Zbl
[35] Rimányi R., Weber A., Elliptic classes of Schubert cells via Bott–Samelson resolution, arXiv: 1904.10852
[36] Rosu I., “Equivariant elliptic cohomology and rigidity”, Amer. J. Math., 123 (2001), 647–677, arXiv: math.AT/9912089 | DOI | MR | Zbl
[37] Smirnov A., Elliptic stable envelope for Hilbert scheme of points in the plane, arXiv: 1804.08779
[38] Tarasov V., Varchenko A., “Jackson integral representations for solutions to the quantized KZ equation”, St. Petersburg Math. J., 6 (1994), 275–313, arXiv: hep-th/9311040 | MR | Zbl
[39] Tarasov V., Varchenko A., “Geometry of $q$-hypergeometric functions as a bridge between Yangians and quantum affine algebras”, Invent. Math., 128 (1997), 501–588, arXiv: q-alg/9604011 | DOI | MR | Zbl
[40] Tarasov V., Varchenko A., Geometry of $q$-hypergeometric functions, quantum affine algebras and elliptic quantum groups, Astérisque, 246, 1997, vi+135 pp., arXiv: q-alg/9703044 | MR | Zbl
[41] Tarasov V., Varchenko A., “Combinatorial formulae for nested Bethe vectors”, SIGMA, 9 (2013), 048, 28 pp., arXiv: math.QA/0702277 | DOI | MR | Zbl
[42] Varchenko A., “Quantized Knizhnik–Zamolodchikov equations, quantum Yang–Baxter equation, and difference equations for $q$-hypergeometric functions”, Comm. Math. Phys., 162 (1994), 499–528 | DOI | MR | Zbl