Mots-clés : partitions
@article{SIGMA_2019_15_a91,
author = {Promit Ghosal},
title = {Correlation {Functions} of the {Pfaffian} {Schur} {Process} {Using} {Macdonald} {Difference} {Operators}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a91/}
}
TY - JOUR AU - Promit Ghosal TI - Correlation Functions of the Pfaffian Schur Process Using Macdonald Difference Operators JO - Symmetry, integrability and geometry: methods and applications PY - 2019 VL - 15 UR - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a91/ LA - en ID - SIGMA_2019_15_a91 ER -
Promit Ghosal. Correlation Functions of the Pfaffian Schur Process Using Macdonald Difference Operators. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a91/
[1] Aggarwal A., “Correlation functions of the Schur process through Macdonald difference operators”, J. Combin. Theory Ser. A, 131 (2015), 88–118, arXiv: 1401.6979 | DOI | MR | Zbl
[2] Baik J., Barraquand G., Corwin I., Suidan T., “Facilitated exclusion process”, Computation and Combinatorics in Dynamics, Stochastics and Control, Abel Symp., 13, Springer, Cham, 2018, 1–35, arXiv: 1707.01923 | DOI | MR | Zbl
[3] Baik J., Barraquand G., Corwin I., Suidan T., “Pfaffian Schur processes and last passage percolation in a half-quadrant”, Ann. Probab., 46 (2018), 3015–3089, arXiv: 1606.00525 | DOI | MR | Zbl
[4] Baik J., Rains E. M., “Algebraic aspects of increasing subsequences”, Duke Math. J., 109 (2001), 1–65, arXiv: math.CO/9905083 | DOI | MR | Zbl
[5] Barraquand G., Borodin A., Corwin I., Half-space Macdonald processes, arXiv: 1802.08210 | MR
[6] Barraquand G., Borodin A., Corwin I., Wheeler M., “Stochastic six-vertex model in a half-quadrant and half-line open asymmetric simple exclusion process”, Duke Math. J., 167 (2018), 2457–2529, arXiv: 1704.04309 | DOI | MR | Zbl
[7] Betea D., Correlations for symplectic and orthogonal Schur measures, arXiv: 1804.08495
[8] Betea D., Boutillier C., Bouttier J., Chapuy G., Corteel S., Vuletić M., “Perfect sampling algorithms for Schur processes”, Markov Process. Related Fields, 24 (2018), 381–418, arXiv: 1407.3764 | MR | Zbl
[9] Betea D., Bouttier J., Nejjar P., Vuletić M., “The free boundary Schur process and applications I”, Ann. Henri Poincaré, 19 (2018), 3663–3742, arXiv: 1704.05809 | DOI | MR | Zbl
[10] Betea D., Wheeler M., “Refined Cauchy and Littlewood identities, plane partitions and symmetry classes of alternating sign matrices”, J. Combin. Theory Ser. A, 137 (2016), 126–165, arXiv: 1402.0229 | DOI | MR | Zbl
[11] Borodin A., “Schur dynamics of the Schur processes”, Adv. Math., 228 (2011), 2268–2291, arXiv: 1001.3442 | DOI | MR | Zbl
[12] Borodin A., Corwin I., “Macdonald processes”, Probab. Theory Related Fields, 158 (2014), 225–400, arXiv: 1111.4408 | DOI | MR | Zbl
[13] Borodin A., Corwin I., “Discrete time $q$-TASEPs”, Int. Math. Res. Not., 2015 (2015), 499–537, arXiv: 1305.2972 | DOI | MR | Zbl
[14] Borodin A., Corwin I., Ferrari P., “Free energy fluctuations for directed polymers in random media in $1+1$ dimension”, Comm. Pure Appl. Math., 67 (2014), 1129–1214, arXiv: 1204.1024 | DOI | MR | Zbl
[15] Borodin A., Corwin I., Gorin V., Shakirov S., “Observables of Macdonald processes”, Trans. Amer. Math. Soc., 368 (2016), 1517–1558, arXiv: 1306.0659 | DOI | MR | Zbl
[16] Borodin A., Corwin I., Remenik D., “Log-gamma polymer free energy fluctuations via a Fredholm determinant identity”, Comm. Math. Phys., 324 (2013), 215–232, arXiv: 1206.4573 | DOI | MR | Zbl
[17] Borodin A., Corwin I., Sasamoto T., “From duality to determinants for $q$-TASEP and ASEP”, Ann. Probab., 42 (2014), 2314–2382, arXiv: 1207.5035 | DOI | MR | Zbl
[18] Borodin A., Ferrari P. L., “Anisotropic growth of random surfaces in $2+1$ dimensions”, Comm. Math. Phys., 325 (2014), 603–684, arXiv: 0804.3035 | DOI | MR | Zbl
[19] Borodin A., Gorin V., “General $\beta$-Jacobi corners process and the Gaussian free field”, Comm. Pure Appl. Math., 68 (2015), 1774–1844, arXiv: 1305.3627 | DOI | MR | Zbl
[20] Borodin A., Gorin V., “Lectures on integrable probability”, Probability and Statistical Physics in St. Petersburg, Proc. Sympos. Pure Math., 91, Amer. Math. Soc., Providence, RI, 2016, 155–214, arXiv: 1212.3351 | MR | Zbl
[21] Borodin A., Okounkov A., “A Fredholm determinant formula for Toeplitz determinants”, Integral Equations Operator Theory, 37 (2000), 386–396, arXiv: math.CA/9907165 | DOI | MR | Zbl
[22] Borodin A., Olshanski G., “Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes”, Ann. of Math., 161 (2005), 1319–1422, arXiv: math.RT/0109194 | DOI | MR | Zbl
[23] Borodin A., Petrov L., “Nearest neighbor Markov dynamics on Macdonald processes”, Adv. Math., 300 (2016), 71–155, arXiv: 1305.5501 | DOI | MR | Zbl
[24] Borodin A., Rains E. M., “Eynard–Mehta theorem, Schur process, and their Pfaffian analogs”, J. Stat. Phys., 121 (2005), 291–317, arXiv: math-ph/0409059 | DOI | MR | Zbl
[25] Corwin I., “Macdonald processes, quantum integrable systems and the Kardar–Parisi–Zhang universality class”, Proceedings of the International Congress of Mathematicians (Seoul, 2014), v. III, Kyung Moon Sa, Seoul, 2014, 1007–1034, arXiv: 1403.6877 | MR | Zbl
[26] Corwin I., Petrov L., “The $q$-PushASEP: a new integrable model for traffic in $1+1$ dimension”, J. Stat. Phys., 160 (2015), 1005–1026, arXiv: 1308.3124 | DOI | MR | Zbl
[27] Forrester P. J., Nagao T., Rains E. M., “Correlation functions for random involutions”, Int. Math. Res. Not., 2006 (2006), 89796, 35 pp., arXiv: math.CO/0503074 | DOI | MR | Zbl
[28] Gorin V., Shkolnikov M., “Multilevel Dyson Brownian motions via Jack polynomials”, Probab. Theory Related Fields, 163 (2015), 413–463, arXiv: 1401.5595 | DOI | MR | Zbl
[29] Johansson K., “Discrete polynuclear growth and determinantal processes”, Comm. Math. Phys., 242 (2003), 277–329, arXiv: math.PR/0206208 | DOI | MR | Zbl
[30] Lassalle M., “A short proof of generalized Jacobi–Trudi expansions for Macdonald polynomials”, Jack, Hall–Littlewood and Macdonald Polynomials, Contemp. Math., 417, Amer. Math. Soc., Providence, RI, 2006, 271–280, arXiv: math.CO/0401032 | DOI | MR | Zbl
[31] Lassalle M., Schlosser M., “Inversion of the Pieri formula for Macdonald polynomials”, Adv. Math., 202 (2006), 289–325, arXiv: math.CO/0402127 | DOI | MR | Zbl
[32] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Classic Texts in the Physical Sciences, 2nd ed., The Clarendon Press, Oxford University Press, New York, 2015 | MR | Zbl
[33] Okounkov A., “Infinite wedge and random partitions”, Selecta Math. (N.S.), 7 (2001), 57–81, arXiv: math.RT/9907127 | DOI | MR | Zbl
[34] Okounkov A., “The uses of random partitions”, XIVth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2005, 379–403, arXiv: math-ph/0309015 | DOI | MR | Zbl
[35] Okounkov A., Reshetikhin N., “Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram”, J. Amer. Math. Soc., 16 (2003), 581–603, arXiv: math.CO/0107056 | DOI | MR | Zbl
[36] Rains E. M., Correlation functions for symmetrized increasing subsequences, arXiv: math.CO/0006097
[37] Sasamoto T., Imamura T., “Fluctuations of the one-dimensional polynuclear growth model in half-space”, J. Stat. Phys., 115 (2004), 749–803, arXiv: cond-mat/0307011 | DOI | MR | Zbl
[38] Schur J., “Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen”, J. Reine Angew. Math., 139 (1911), 155–250 | DOI | MR | Zbl
[39] Stembridge J. R., “Nonintersecting paths, Pfaffians, and plane partitions”, Adv. Math., 83 (1990), 96–131 | DOI | MR
[40] Sundquist T., “Two variable Pfaffian identities and symmetric functions”, J. Algebraic Combin., 5 (1996), 135–148 | DOI | MR | Zbl
[41] Warnaar S. O., “Bisymmetric functions, Macdonald polynomials and $\mathfrak{sl}_3$ basic hypergeometric series”, Compos. Math., 144 (2008), 271–303, arXiv: math.CO/0511333 | DOI | MR | Zbl