@article{SIGMA_2019_15_a9,
author = {Brian Collier},
title = {Studying {Deformations} of {Fuchsian} {Representations} with {Higgs} {Bundles}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a9/}
}
Brian Collier. Studying Deformations of Fuchsian Representations with Higgs Bundles. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a9/
[1] Aparicio-Arroyo M., The geometry of ${\rm SO}(p,q)$ Higgs bundles, Ph.D. Thesis, Facultad de Ciencias de la Universidad de Salamanca, 2009
[2] Aparicio-Arroyo M., Bradlow S., Collier B., García-Prada O., Gothen P. B., Oliveira A., ${\rm SO}(p,q)$-Higgs bundles and higher Teichmüller components, arXiv: 1802.08093 | MR
[3] Atiyah M. F., Bott R., “The Yang–Mills equations over Riemann surfaces”, Philos. Trans. Roy. Soc. London Ser. A, 308 (1983), 523–615 | DOI | MR | Zbl
[4] Baraglia D., Schaposnik L. P., Cayley and Langlands type correspondences for orthogonal Higgs bundles, arXiv: 1708.08828
[5] Biswas I., Ramanan S., “An infinitesimal study of the moduli of Hitchin pairs”, J. London Math. Soc., 49 (1994), 219–231 | DOI | MR | Zbl
[6] Bradlow S. B., García-Prada O., Gothen P. B., “Homotopy groups of moduli spaces of representations”, Topology, 47 (2008), 203–224, arXiv: math.AG/0506444 | DOI | MR | Zbl
[7] Burger M., Iozzi A., Wienhard A., “Surface group representations with maximal Toledo invariant”, Ann. of Math., 172 (2010), 517–566, arXiv: math.DG/0605656 | DOI | MR | Zbl
[8] Burger M., Iozzi A., Wienhard A., “Higher Teichmüller spaces: from ${\rm SL}(2,{\mathbb R})$ to other Lie groups”, Handbook of Teichmüller Theory, v. IV, IRMA Lect. Math. Theor. Phys., 19, Eur. Math. Soc., Zürich, 2014, 539–618, arXiv: 1004.2894 | DOI | MR | Zbl
[9] Collier B., ${\rm SO}(n,n+1)$-surface group representations and their Higgs bundles, arXiv: 1710.01287
[10] Collier B., Tholozan N., Toulisse J., The geometry of maximal representations of surface groups into $\mathrm{SO}(2,n)$, arXiv: 1702.08799
[11] García-Prada O., Gothen P., Mundet i Riera I., The Hitchin–Kobayashi correspondence, Higgs pairs and surface group representations, arXiv: 0909.4487
[12] García-Prada O., Oliveira A., “Connectedness of Higgs bundle moduli for complex reductive Lie groups”, Asian J. Math., 21 (2017), 791–810, arXiv: 1408.4778 | DOI | MR | Zbl
[13] Goldman W. M., “The symplectic nature of fundamental groups of surfaces”, Adv. Math., 54 (1984), 200–225 | DOI | MR | Zbl
[14] Goldman W. M., “Topological components of spaces of representations”, Invent. Math., 93 (1988), 557–607 | DOI | MR | Zbl
[15] Goldman W. M., Millson J. J., “Local rigidity of discrete groups acting on complex hyperbolic space”, Invent. Math., 88 (1987), 495–520 | DOI | MR | Zbl
[16] Guichard O., Wienhard A., Positivity and higher Teichmüller theory, arXiv: 1802.02833
[17] Guichard O., Wienhard A., “Anosov representations: domains of discontinuity and applications”, Invent. Math., 190 (2012), 357–438, arXiv: 1108.0733 | DOI | MR | Zbl
[18] Hausel T., Thaddeus M., “Mirror symmetry, Langlands duality, and the Hitchin system”, Invent. Math., 153 (2003), 197–229, arXiv: math.AG/0205236 | DOI | MR | Zbl
[19] Hitchin N. J., “The self-duality equations on a Riemann surface”, Proc. London Math. Soc., 55 (1987), 59–126 | DOI | MR | Zbl
[20] Hitchin N. J., “Stable bundles and integrable systems”, Duke Math. J., 54 (1987), 91–114 | DOI | MR | Zbl
[21] Hitchin N. J., “Lie groups and Teichmüller space”, Topology, 31 (1992), 449–473 | DOI | MR | Zbl
[22] Kostant B., “The principal three-dimensional subgroup and the {B}etti numbers of a complex simple Lie group”, Amer. J. Math., 81 (1959), 973–1032 | DOI | MR | Zbl
[23] Labourie F., “Anosov flows, surface groups and curves in projective space”, Invent. Math., 165 (2006), 51–114, arXiv: math.DG/0401230 | DOI | MR | Zbl
[24] Li J., “The space of surface group representations”, Manuscripta Math., 78 (1993), 223–243 | DOI | MR | Zbl
[25] Li Q., An introduction to Higgs bundles via harmonic maps, arXiv: 1809.05747
[26] Macdonald I. G., “Symmetric products of an algebraic curve”, Topology, 1 (1962), 319–343 | DOI | MR | Zbl
[27] Milnor J., “On the existence of a connection with curvature zero”, Comment. Math. Helv., 32 (1958), 215–223 | DOI | MR | Zbl
[28] Narasimhan M. S., Seshadri C. S., “Stable and unitary vector bundles on a compact Riemann surface”, Ann. of Math., 82 (1965), 540–567 | DOI | MR | Zbl
[29] Nitsure N., “Moduli space of semistable pairs on a curve”, Proc. London Math. Soc., 62 (1991), 275–300 | DOI | MR | Zbl
[30] Ramanathan A., “Stable principal bundles on a compact Riemann surface”, Math. Ann., 213 (1975), 129–152 | DOI | MR | Zbl
[31] Simpson C. T., “Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization”, J. Amer. Math. Soc., 1 (1988), 867–918 | DOI | MR | Zbl
[32] Simpson C. T., “Higgs bundles and local systems”, Inst. Hautes Études Sci. Publ. Math., 75 (1992), 5–95 | DOI | MR | Zbl
[33] Toledo D., “Representations of surface groups in complex hyperbolic space”, J. Differential Geom., 29 (1989), 125–133 | DOI | MR | Zbl
[34] Wienhard A., An invitation to higher Teichmüller theory, arXiv: 1803.06870