Quasi-Polynomials and the Singular $[Q,R]=0$ Theorem
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this short note we revisit the ‘shift-desingularization’ version of the $[Q,R]=0$ theorem for possibly singular symplectic quotients. We take as starting point an elegant proof due to Szenes–Vergne of the quasi-polynomial behavior of the multiplicity as a function of the tensor power of the prequantum line bundle. We use the Berline–Vergne index formula and the stationary phase expansion to compute the quasi-polynomial, adapting an early approach of Meinrenken.
Keywords: symplectic geometry, Hamiltonian $G$-spaces, symplectic reduction, geometric quantization, stationary phase.
Mots-clés : quasi-polynomials
@article{SIGMA_2019_15_a89,
     author = {Yiannis Loizides},
     title = {Quasi-Polynomials and the {Singular} $[Q,R]=0$ {Theorem}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a89/}
}
TY  - JOUR
AU  - Yiannis Loizides
TI  - Quasi-Polynomials and the Singular $[Q,R]=0$ Theorem
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a89/
LA  - en
ID  - SIGMA_2019_15_a89
ER  - 
%0 Journal Article
%A Yiannis Loizides
%T Quasi-Polynomials and the Singular $[Q,R]=0$ Theorem
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a89/
%G en
%F SIGMA_2019_15_a89
Yiannis Loizides. Quasi-Polynomials and the Singular $[Q,R]=0$ Theorem. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a89/

[1] Berline N., Getzler E., Vergne M., Heat kernels and Dirac operators, Grundlehren der Mathematischen Wissenschaften, 298, Springer-Verlag, Berlin, 1992 | DOI | MR | Zbl

[2] Canas da Silva A. M. L. G., Multiplicity formulas for orbifolds, Ph.D. Thesis, Massachusetts Institute of Technology, 1996 | MR

[3] Guillemin V., Sternberg S., “Geometric quantization and multiplicities of group representations”, Invent. Math., 67 (1982), 515–538 | DOI | MR | Zbl

[4] Hörmander L., The analysis of linear partial differential operators. I Distribution theory and Fourier analysis, Grundlehren der Mathematischen Wissenschaften, 256, 2nd ed., Springer-Verlag, Berlin, 1990 | DOI | MR | Zbl

[5] Lerman E., Meinrenken E., Tolman S., Woodward C., “Nonabelian convexity by symplectic cuts”, Topology, 37 (1998), 245–259 | DOI | MR | Zbl

[6] Loizides Y., Meinrenken E., The decomposition formula for Verlinde sums, arXiv: 1803.06684

[7] Meinrenken E., “On Riemann–Roch formulas for multiplicities”, J. Amer. Math. Soc., 9 (1996), 373–389, arXiv: alg-geom/9405014 | DOI | MR | Zbl

[8] Meinrenken E., Symplectic surgery and the ${\rm Spin}^c$-{D}irac operator, Adv. Math., 134 (1998), 240–277, arXiv: dg-ga/9504002 | DOI | MR | Zbl

[9] Meinrenken E., “Equivariant cohomology and the Cartan model”, Encyclopedia of Mathematical Physics, Elsevier, 2006, 242–250 | DOI

[10] Meinrenken E., Sjamaar R., “Singular reduction and quantization”, Topology, 38 (1999), 699–762, arXiv: dg-ga/9707023 | DOI | MR | Zbl

[11] Paradan P.-E., “Localization of the Riemann–Roch character”, J. Funct. Anal., 187 (2001), 442–509, arXiv: math.DG/9911024 | DOI | MR | Zbl

[12] Paradan P.-E., “Wall-crossing formulas in Hamiltonian geometry”, Geometric Aspects of Analysis and Mechanics, Progr. Math., 292, Birkhäuser/Springer, New York, 2011, 295–343, arXiv: math.SG/0411306 | DOI | MR | Zbl

[13] Paradan P.-E., Vergne M., Witten non abelian localization for equivariant K-theory, and the $[Q,R]=0$ theorem, Mem. Amer. Math. Soc., 261, 2019, 71 pp., arXiv: 1504.07502 | DOI | MR

[14] Szenes A., Vergne M., “$[Q,R]=0$ and Kostant partition functions”, Enseign. Math., 63 (2017), 471–516, arXiv: 1006.4149 | DOI | MR | Zbl

[15] Tian Y., Zhang W., “An analytic proof of the geometric quantization conjecture of Guillemin–Sternberg”, Invent. Math., 132 (1998), 229–259 | DOI | MR | Zbl