Mots-clés : moduli space, Lagrangian configuration.
@article{SIGMA_2019_15_a88,
author = {Sophie Morier-Genoud},
title = {Symplectic {Frieze} {Patterns}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a88/}
}
Sophie Morier-Genoud. Symplectic Frieze Patterns. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a88/
[1] Assem I., Dupont G., Schiffler R., Smith D., “Friezes, strings and cluster variables”, Glasg. Math. J., 54 (2012), 27–60, arXiv: 1009.3341 | DOI | MR | Zbl
[2] Assem I., Reutenauer C., Smith D., “Friezes”, Adv. Math., 225 (2010), 3134–3165, arXiv: 0906.2026 | DOI | MR | Zbl
[3] Baur K., Marsh R. J., “Frieze patterns for punctured discs”, J. Algebraic Combin., 30 (2009), 349–379, arXiv: 1008.5329 | DOI | MR | Zbl
[4] Bergeron F., Reutenauer C., “${\rm SL}_k$-tilings of the plane”, Illinois J. Math., 54 (2010), 263–300, arXiv: 1002.1089 | DOI | MR | Zbl
[5] Bessenrodt C., Holm T., Jørgensen P., “All ${\rm SL}_2$-tilings come from infinite triangulations”, Adv. Math., 315 (2017), 194–245, arXiv: 1603.09103 | DOI | MR | Zbl
[6] Conley C. H., Ovsienko V., “Lagrangian configurations and symplectic cross-ratios”, Math. Ann., 375 (2019), 1105–1145, arXiv: 1812.04271 | DOI | MR | Zbl
[7] Conway J. H., Coxeter H. S. M., “Triangulated polygons and frieze patterns”, Math. Gaz., 57 (1973), 175–183 | DOI | MR | Zbl
[8] Conway J. H., Guy R. K., The book of numbers, Copernicus, New York, 1996 | DOI | MR
[9] Coxeter H. S. M., “Frieze patterns”, Acta Arith., 18 (1971), 297–310 | DOI | MR | Zbl
[10] Cuntz M., Holm T., “Frieze patterns over integers and other subsets of the complex numbers”, J. Comb. Algebra, 3 (2019), 153–188, arXiv: 1711.03724 | DOI | MR | Zbl
[11] Dupont G., “An approach to non-simply laced cluster algebras”, J. Algebra, 320 (2008), 1626–1661, arXiv: math.RT/0512043 | DOI | MR | Zbl
[12] Fomin S., Williams L., Zelevinsky A., Introduction to cluster algebras, Chapters 1–3, arXiv: 1608.05735
[13] Fomin S., Zelevinsky A., “Cluster algebras. I Foundations”, J. Amer. Math. Soc., 15 (2002), 497–529, arXiv: math.RT/0104151 | DOI | MR | Zbl
[14] Fomin S., Zelevinsky A., “Cluster algebras. II Finite type classification”, Invent. Math., 154 (2003), 63–121, arXiv: math.RA/0208229 | DOI | MR | Zbl
[15] Fomin S., Zelevinsky A., “Cluster algebras. IV Coefficients”, Compos. Math., 143 (2007), 112–164, arXiv: math.RA/0602259 | DOI | MR | Zbl
[16] Fontaine B., Plamondon P. G., “Counting friezes in type $D_n$”, J. Algebraic Combin., 44 (2016), 433–445, arXiv: 1409.3698 | DOI | MR | Zbl
[17] Fuchs D., Tabachnikov S., “Self-dual polygons and self-dual curves”, Funct. Anal. Other Math., 2 (2009), 203–220, arXiv: 0707.1048 | DOI | MR | Zbl
[18] Keller B., Quiver mutation in java, https://webusers.imj-prg.fr/b̃ernhard.keller/
[19] Keller B., “Cluster algebras, quiver representations and triangulated categories”, Triangulated Categories, London Math. Soc. Lecture Note Ser., 375, Cambridge University Press, Cambridge, 2010, 76–160, arXiv: 0807.1960 | MR | Zbl
[20] Keller B., “The periodicity conjecture for pairs of Dynkin diagrams”, Ann. of Math., 177 (2013), 111–170, arXiv: 1001.1531 | DOI | MR | Zbl
[21] Krichever I. M., “Commuting difference operators and the combinatorial Gale transform”, Funct. Anal. Appl., 49 (2015), 175–188, arXiv: 1403.4629 | DOI | MR | Zbl
[22] Morier-Genoud S., “Arithmetics of 2-friezes”, J. Algebraic Combin., 36 (2012), 515–539, arXiv: 1109.0917 | DOI | MR | Zbl
[23] Morier-Genoud S., “Coxeter's frieze patterns at the crossroads of algebra, geometry and combinatorics”, Bull. Lond. Math. Soc., 47 (2015), 895–938, arXiv: 1503.05049 | DOI | MR | Zbl
[24] Morier-Genoud S., Ovsienko V., Schwartz R. E., Tabachnikov S., “Linear difference equations, frieze patterns, and the combinatorial Gale transform”, Forum Math. Sigma, 2 (2014), e22, 45 pp., arXiv: 1309.3880 | DOI | MR | Zbl
[25] Morier-Genoud S., Ovsienko V., Tabachnikov S., “2-frieze patterns and the cluster structure of the space of polygons”, Ann. Inst. Fourier (Grenoble), 62 (2012), 937–987, arXiv: 1008.3359 | DOI | MR | Zbl
[26] Ovsienko V., “Partitions of unity in ${\rm SL}(2,{\mathbb Z})$, negative continued fractions, and dissections of polygons”, Res. Math. Sci., 5 (2018), 21, 25 pp., arXiv: 1710.02996 | DOI | MR
[27] Tschabold M., Arithmetic infinite friezes from punctured discs, arXiv: 1503.04352