Symplectic Frieze Patterns
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce a new class of friezes which is related to symplectic geometry. On the algebraic and combinatrics sides, this variant of friezes is related to the cluster algebras involving the Dynkin diagrams of type $\mathrm{C}_{2}$ and $\mathrm{A}_{m}$. On the geometric side, they are related to the moduli space of Lagrangian configurations of points in the 4-dimensional symplectic space introduced in [Conley C.H., Ovsienko V., Math. Ann. 375 (2019), 1105–1145]. Symplectic friezes share similar combinatorial properties to those of Coxeter friezes and $\mathrm{SL}$-friezes.
Keywords: frieze, cluster algebra, difference equation
Mots-clés : moduli space, Lagrangian configuration.
@article{SIGMA_2019_15_a88,
     author = {Sophie Morier-Genoud},
     title = {Symplectic {Frieze} {Patterns}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a88/}
}
TY  - JOUR
AU  - Sophie Morier-Genoud
TI  - Symplectic Frieze Patterns
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a88/
LA  - en
ID  - SIGMA_2019_15_a88
ER  - 
%0 Journal Article
%A Sophie Morier-Genoud
%T Symplectic Frieze Patterns
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a88/
%G en
%F SIGMA_2019_15_a88
Sophie Morier-Genoud. Symplectic Frieze Patterns. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a88/

[1] Assem I., Dupont G., Schiffler R., Smith D., “Friezes, strings and cluster variables”, Glasg. Math. J., 54 (2012), 27–60, arXiv: 1009.3341 | DOI | MR | Zbl

[2] Assem I., Reutenauer C., Smith D., “Friezes”, Adv. Math., 225 (2010), 3134–3165, arXiv: 0906.2026 | DOI | MR | Zbl

[3] Baur K., Marsh R. J., “Frieze patterns for punctured discs”, J. Algebraic Combin., 30 (2009), 349–379, arXiv: 1008.5329 | DOI | MR | Zbl

[4] Bergeron F., Reutenauer C., “${\rm SL}_k$-tilings of the plane”, Illinois J. Math., 54 (2010), 263–300, arXiv: 1002.1089 | DOI | MR | Zbl

[5] Bessenrodt C., Holm T., Jørgensen P., “All ${\rm SL}_2$-tilings come from infinite triangulations”, Adv. Math., 315 (2017), 194–245, arXiv: 1603.09103 | DOI | MR | Zbl

[6] Conley C. H., Ovsienko V., “Lagrangian configurations and symplectic cross-ratios”, Math. Ann., 375 (2019), 1105–1145, arXiv: 1812.04271 | DOI | MR | Zbl

[7] Conway J. H., Coxeter H. S. M., “Triangulated polygons and frieze patterns”, Math. Gaz., 57 (1973), 175–183 | DOI | MR | Zbl

[8] Conway J. H., Guy R. K., The book of numbers, Copernicus, New York, 1996 | DOI | MR

[9] Coxeter H. S. M., “Frieze patterns”, Acta Arith., 18 (1971), 297–310 | DOI | MR | Zbl

[10] Cuntz M., Holm T., “Frieze patterns over integers and other subsets of the complex numbers”, J. Comb. Algebra, 3 (2019), 153–188, arXiv: 1711.03724 | DOI | MR | Zbl

[11] Dupont G., “An approach to non-simply laced cluster algebras”, J. Algebra, 320 (2008), 1626–1661, arXiv: math.RT/0512043 | DOI | MR | Zbl

[12] Fomin S., Williams L., Zelevinsky A., Introduction to cluster algebras, Chapters 1–3, arXiv: 1608.05735

[13] Fomin S., Zelevinsky A., “Cluster algebras. I Foundations”, J. Amer. Math. Soc., 15 (2002), 497–529, arXiv: math.RT/0104151 | DOI | MR | Zbl

[14] Fomin S., Zelevinsky A., “Cluster algebras. II Finite type classification”, Invent. Math., 154 (2003), 63–121, arXiv: math.RA/0208229 | DOI | MR | Zbl

[15] Fomin S., Zelevinsky A., “Cluster algebras. IV Coefficients”, Compos. Math., 143 (2007), 112–164, arXiv: math.RA/0602259 | DOI | MR | Zbl

[16] Fontaine B., Plamondon P. G., “Counting friezes in type $D_n$”, J. Algebraic Combin., 44 (2016), 433–445, arXiv: 1409.3698 | DOI | MR | Zbl

[17] Fuchs D., Tabachnikov S., “Self-dual polygons and self-dual curves”, Funct. Anal. Other Math., 2 (2009), 203–220, arXiv: 0707.1048 | DOI | MR | Zbl

[18] Keller B., Quiver mutation in java, https://webusers.imj-prg.fr/b̃ernhard.keller/

[19] Keller B., “Cluster algebras, quiver representations and triangulated categories”, Triangulated Categories, London Math. Soc. Lecture Note Ser., 375, Cambridge University Press, Cambridge, 2010, 76–160, arXiv: 0807.1960 | MR | Zbl

[20] Keller B., “The periodicity conjecture for pairs of Dynkin diagrams”, Ann. of Math., 177 (2013), 111–170, arXiv: 1001.1531 | DOI | MR | Zbl

[21] Krichever I. M., “Commuting difference operators and the combinatorial Gale transform”, Funct. Anal. Appl., 49 (2015), 175–188, arXiv: 1403.4629 | DOI | MR | Zbl

[22] Morier-Genoud S., “Arithmetics of 2-friezes”, J. Algebraic Combin., 36 (2012), 515–539, arXiv: 1109.0917 | DOI | MR | Zbl

[23] Morier-Genoud S., “Coxeter's frieze patterns at the crossroads of algebra, geometry and combinatorics”, Bull. Lond. Math. Soc., 47 (2015), 895–938, arXiv: 1503.05049 | DOI | MR | Zbl

[24] Morier-Genoud S., Ovsienko V., Schwartz R. E., Tabachnikov S., “Linear difference equations, frieze patterns, and the combinatorial Gale transform”, Forum Math. Sigma, 2 (2014), e22, 45 pp., arXiv: 1309.3880 | DOI | MR | Zbl

[25] Morier-Genoud S., Ovsienko V., Tabachnikov S., “2-frieze patterns and the cluster structure of the space of polygons”, Ann. Inst. Fourier (Grenoble), 62 (2012), 937–987, arXiv: 1008.3359 | DOI | MR | Zbl

[26] Ovsienko V., “Partitions of unity in ${\rm SL}(2,{\mathbb Z})$, negative continued fractions, and dissections of polygons”, Res. Math. Sci., 5 (2018), 21, 25 pp., arXiv: 1710.02996 | DOI | MR

[27] Tschabold M., Arithmetic infinite friezes from punctured discs, arXiv: 1503.04352