Variations for Some Painlevé Equations
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper first discusses irreducibility of a Painlevé equation $P$. We explain how the Painlevé property is helpful for the computation of special classical and algebraic solutions. As in a paper of Morales-Ruiz we associate an autonomous Hamiltonian $\mathbb{H}$ to a Painlevé equation $P$. Complete integrability of $\mathbb{H}$ is shown to imply that all solutions to $P$ are classical (which includes algebraic), so in particular $P$ is solvable by “quadratures”. Next, we show that the variational equation of $P$ at a given algebraic solution coincides with the normal variational equation of $\mathbb{H}$ at the corresponding solution. Finally, we test the Morales-Ramis theorem in all cases $P_{2}$ to $P_{5}$ where algebraic solutions are present, by showing how our results lead to a quick computation of the component of the identity of the differential Galois group for the first two variational equations. As expected there are no cases where this group is commutative.
Keywords: Hamiltonian systems, differential Galois groups.
Mots-clés : variational equations, Painlevé equations
@article{SIGMA_2019_15_a87,
     author = {Primitivo B. Acosta-Hum\'anez and Marius van der Put and Jaap Top},
     title = {Variations for {Some} {Painlev\'e} {Equations}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a87/}
}
TY  - JOUR
AU  - Primitivo B. Acosta-Humánez
AU  - Marius van der Put
AU  - Jaap Top
TI  - Variations for Some Painlevé Equations
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a87/
LA  - en
ID  - SIGMA_2019_15_a87
ER  - 
%0 Journal Article
%A Primitivo B. Acosta-Humánez
%A Marius van der Put
%A Jaap Top
%T Variations for Some Painlevé Equations
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a87/
%G en
%F SIGMA_2019_15_a87
Primitivo B. Acosta-Humánez; Marius van der Put; Jaap Top. Variations for Some Painlevé Equations. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a87/

[1] Acosta-Humánez P. B., “Nonautonomous Hamiltonian systems and Morales-Ramis theory. I. The case $\ddot x=f(x,t)$”, SIAM J. Appl. Dyn. Syst., 8 (2009), 279–297, arXiv: 0808.3028 | DOI | MR | Zbl

[2] Acosta-Humánez P. B., van der Put M., Top J., “Isomonodromy for the degenerate fifth Painlevé equation”, SIGMA, 13 (2017), 029, 14 pp., arXiv: 1612.03674 | DOI | MR | Zbl

[3] Casale G., Weil J. A., “Galoisian methods for testing irreducibility of order two nonlinear differential equations”, Pacific J. Math., 297 (2018), 299–337, arXiv: 1504.08134 | DOI | MR | Zbl

[4] Clarkson P. A., Painlevé equations – nonlinear special functions, slides presented during the IMA Summer Program Special Functions in the Digital Age (Minneapolis, July 22 – August 2, 2002) http://www.math.rug.nl/t̃op/Clarkson.pdf | MR

[5] Clarkson P. A., “Special polynomials associated with rational solutions of the fifth Painlevé equation”, J. Comput. Appl. Math., 178 (2005), 111–129 | DOI | MR | Zbl

[6] Clarkson P. A., “Painlevé equations – nonlinear special functions”, Orthogonal Polynomials and Special Functions, Lecture Notes in Math., 1883, eds. F. Marcellán, W. Van Assche, Springer, Berlin, 2006, 331–411 | DOI | MR | Zbl

[7] Gromak V. I., Laine I., Shimomura S., Painlevé differential equations in the complex plane, De Gruyter Studies in Mathematics, 28, Walter de Gruyter Co., Berlin, 2002 | DOI | MR

[8] Horozov E., Stoyanova T., “Non-integrability of some Painlevé {VI}-equations and dilogarithms”, Regul. Chaotic Dyn., 12 (2007), 622–629 | DOI | MR | Zbl

[9] Jimbo M., Miwa T., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II”, Phys. D, 2 (1981), 407–448 | DOI | MR | Zbl

[10] Lukashevich N. A., “On the theory of {P}ainlevé's third equation”, Differ. Uravn., 3 (1967), 1913–1923 | MR | Zbl

[11] Lukashevich N. A., “The solutions of Painlevé's fifth equation”, Differ. Uravn., 4 (1968), 1413–1420 | MR | Zbl

[12] Matsuda M., First-order algebraic differential equations. A differential algebraic approach, Lecture Notes in Math., 804, Springer, Berlin, 1980 | DOI | MR | Zbl

[13] Morales-Ruiz J. J., “A remark about the Painlevé transcendents”, Théories asymptotiques et équations de Painlevé, Sémin. Congr., 14, Soc. Math. France, Paris, 2006, 229–235 | MR | Zbl

[14] Morales-Ruiz J. J., Ramis J. P., “Galoisian obstructions to integrability of Hamiltonian systems”, Methods Appl. Anal., 8 (2001), 33–96 | DOI | MR

[15] Morales-Ruiz J. J., Ramis J. P., Simo C., “Integrability of Hamiltonian systems and differential Galois groups of higher variational equations”, Ann. Sci. École Norm. Sup. (4), 40 (2007), 845–884 | DOI | MR | Zbl

[16] Muntingh G., van der Put M., “Order one equations with the {P}ainlevé property”, Indag. Math. (N.S.), 18 (2007), 83–95, arXiv: 1202.4633 | DOI | MR | Zbl

[17] Nagloo J., Pillay A., “On algebraic relations between solutions of a generic Painlevé equation”, J. Reine Angew. Math., 726 (2017), 1–27, arXiv: 1112.2916 | DOI | MR | Zbl

[18] Ngo Chau L. X., Nguyen K. A., van der Put M., Top J., “Equivalence of differential equations of order one”, J. Symbolic Comput., 71 (2015), 47–59, arXiv: 1303.4960 | DOI | MR | Zbl

[19] Ohyama Y., Kawamuko H., Sakai H., Okamoto K., “Studies on the Painlevé equations. V Third Painlevé equations of special type $P_{\rm III}(D_7)$ and $P_{\rm III}(D_8)$”, J. Math. Sci. Univ. Tokyo, 13 (2006), 145–204 | MR | Zbl

[20] Ohyama Y., Okumura S., “R. Fuchs' problem of the Painlevé equations from the first to the fifth”, Algebraic and Geometric Aspects of Integrable Systems and Random Matrices, Contemp. Math., 593, Amer. Math. Soc., Providence, RI, 2013, 163–178, arXiv: math.CA/0512243 | DOI | MR | Zbl

[21] Stoyanova T., “Non-integrability of Painlevé VI equations in the Liouville sense”, Nonlinearity, 22 (2009), 2201–2230 | DOI | MR | Zbl

[22] Stoyanova T., “Non-integrability of Painlevé V equations in the Liouville sense and Stokes phenomenon”, Adv. Pure Math., 1 (2011), 170–183 | DOI | MR | Zbl

[23] Stoyanova T., A note on the R Fuchs's problem for the Painlevé equations, arXiv: 1204.0157

[24] Stoyanova T., “Non-integrability of the fourth Painlevé equation in the Liouville–Arnold sense”, Nonlinearity, 27 (2014), 1029–1044 | DOI | MR | Zbl

[25] Stoyanova T., Christov O., “Non-integrability of the second Painlevé equation as a Hamiltonian system”, C. R. Acad. Bulgare Sci., 60 (2007), 13–18, arXiv: 1103.2443 | MR | Zbl

[26] Umemura H., “On the irreducibility of the first differential equation of Painlevé”, Algebraic Geometry and Commutative Algebra, v. II, Kinokuniya, Tokyo, 1988, 771–789 | DOI | MR

[27] Umemura H., “Second proof of the irreducibility of the first differential equation of Painlevé”, Nagoya Math. J., 117 (1990), 125–171 | DOI | MR | Zbl

[28] Umemura H., “Birational automorphism groups and differential equations”, Nagoya Math. J., 119 (1990), 1–80 | DOI | MR | Zbl

[29] Umemura H., Watanabe H., “Solutions of the second and fourth Painlevé equations. I”, Nagoya Math. J., 148 (1997), 151–198 | DOI | MR | Zbl

[30] van der Put M., Saito M. H., “Moduli spaces for linear differential equations and the Painlevé equations”, Ann. Inst. Fourier (Grenoble), 59 (2009), 2611–2667, arXiv: 0902.1702 | DOI | MR | Zbl

[31] van der Put M., Singer M. F., Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften, 328, Springer-Verlag, Berlin, 2003 | DOI | MR | Zbl

[32] Żoła̧dek H., Filipuk G., “Painlevé equations, elliptic integrals and elementary functions”, J. Differential Equations, 258 (2015), 1303–1355 | DOI | MR