Mots-clés : Liouville theorem.
@article{SIGMA_2019_15_a85,
author = {Kingshook Biswas and Ricardo P\'erez-Marco},
title = {The {Ramificant} {Determinant}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a85/}
}
Kingshook Biswas; Ricardo Pérez-Marco. The Ramificant Determinant. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a85/
[1] Biswas I., Biswas K., A Torelli type theorem for exp-algebraic curves, arXiv: 1606.06449
[2] Biswas K., Algebraic de Rham cohomology of log-Riemann surfaces of finite type, arXiv: 1602.08219
[3] Biswas K., Pérez-Marco R., “Log-Riemann surfaces, Caratheodory convergence and Euler's formula”, Geometry, groups and dynamics, Contemp. Math., 639, Amer. Math. Soc., Providence, RI, 2015, 197–203, arXiv: 1011.0535 | DOI | MR | Zbl
[4] Biswas K., Pérez-Marco R., “Uniformization of simply connected finite type log-Riemann surfaces”, Geometry, Groups and Dynamics, Contemp. Math., 639, Amer. Math. Soc., Providence, RI, 2015, 205–216, arXiv: 1011.0812 | DOI | MR | Zbl
[5] Biswas K., Pérez-Marco R., Log-Riemann surfaces, arXiv: 1512.03776 | MR
[6] Biswas K., Pérez-Marco R., On tube-log Riemann surfaces and primitives of rational functions, arXiv: 1512.04035
[7] Dedekind R., Weber H., “Theorie der algebraischen Functionen einer Veränderlichen”, J. Reine Angew. Math., 92 (1882), 181–290 | DOI | MR
[8] Kaplansky I., An introduction to differential algebra, Actualités Sci. Ind., Hermann, Paris, 1957 | MR | Zbl
[9] Kontsevich M., Zagier D., “Periods”, Mathematics Unlimited-2001 and Beyond, eds. B. Enguist, W. Schmidt, Springer, Berlin, 2001, 771–808 | DOI | MR | Zbl
[10] Liouville J., “Mémoire sur la détermination des intégrales dont la valeur est algébrique”, J. Éc. Polytech., 14 (1833), 124–193 | MR
[11] Liouville J., “Mémoire sur l'intégration d'une classe de fonctions transcendantes”, J. Reine Angew. Math., 13 (1835), 93–118 | DOI | MR | Zbl
[12] Lützen J., Joseph Liouville 1809–1882: master of pure and applied mathematics, Studies in the History of Mathematics and Physical Sciences, 15, Springer-Verlag, New York, 1990 | DOI | MR | Zbl
[13] Nevanlinna R., “Über Riemannsche Flächen mit endlich vielen Windungspunkten”, Acta Math., 58 (1932), 295–373 | DOI | MR
[14] Nevanlinna R., Analytic functions, Die Grundlehren der mathematischen Wissenschaften, 162, Springer-Verlag, New York–Berlin, 1970 | DOI | MR | Zbl
[15] Pommerenke Ch., Boundary behaviour of conformal maps, Grundlehren der Mathematischen Wissenschaften, 299, Springer-Verlag, Berlin, 1992 | DOI | MR | Zbl
[16] Ritt J. F., Integration in finite terms. Liouville's theory of elementary methods, Columbia University Press, New York, 1948 | MR | Zbl
[17] Ritt J. F., Differential algebra, American Mathematical Society Colloquium Publications, 33, Amer. Math. Soc., New York, 1950 | DOI | MR | Zbl
[18] Taniguchi M., “Explicit representation of structurally finite entire functions”, Proc. Japan Acad. Ser. A Math. Sci., 77 (2001), 68–70 | DOI | MR | Zbl
[19] Taniguchi M., “Synthetic deformation space of an entire function”, Value Distribution Theory and Complex Dynamics (Hong Kong, 2000), Contemp. Math., 303, Amer. Math. Soc., Providence, RI, 2002, 107–136 | DOI | MR | Zbl