Hitchin Fibrations on Two-Dimensional Moduli Spaces of Irregular Higgs Bundles with One Singular Fiber
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We analyze and completely describe the four cases when the Hitchin fibration on a $2$-dimensional moduli space of irregular Higgs bundles over $\mathbb{C}P1$ has a single singular fiber. The case when the fiber at infinity is of type $I_0^*$ is further analyzed, and we give constructions of all the possible configurations of singular curves in elliptic fibrations having this type of singular fiber at infinity.
Keywords: irregular Higgs bundles, Hitchin fibration, elliptic fibrations.
@article{SIGMA_2019_15_a84,
     author = {P\'eter Ivanics and Andr\'as I. Stipsicz and Szil\'ard Szab\'o},
     title = {Hitchin {Fibrations} on {Two-Dimensional} {Moduli} {Spaces} of {Irregular} {Higgs} {Bundles} with {One} {Singular} {Fiber}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a84/}
}
TY  - JOUR
AU  - Péter Ivanics
AU  - András I. Stipsicz
AU  - Szilárd Szabó
TI  - Hitchin Fibrations on Two-Dimensional Moduli Spaces of Irregular Higgs Bundles with One Singular Fiber
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a84/
LA  - en
ID  - SIGMA_2019_15_a84
ER  - 
%0 Journal Article
%A Péter Ivanics
%A András I. Stipsicz
%A Szilárd Szabó
%T Hitchin Fibrations on Two-Dimensional Moduli Spaces of Irregular Higgs Bundles with One Singular Fiber
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a84/
%G en
%F SIGMA_2019_15_a84
Péter Ivanics; András I. Stipsicz; Szilárd Szabó. Hitchin Fibrations on Two-Dimensional Moduli Spaces of Irregular Higgs Bundles with One Singular Fiber. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a84/

[1] Alekseev A., Malkin A., Meinrenken E., “Lie group valued moment maps”, J. Differential Geom., 48 (1998), 445–495, arXiv: dg-ga/9707021 | DOI | MR | Zbl

[2] Biquard O., Boalch P., “Wild non-abelian Hodge theory on curves”, Compos. Math., 140 (2004), 179–204, arXiv: math.DG/0111098 | DOI | MR | Zbl

[3] Boalch P., Hyperkahler manifolds and nonabelian Hodge theory of (irregular) curves, arXiv: 1203.6607

[4] Boalch P., “Simply-laced isomonodromy systems”, Publ. Math. Inst. Hautes Études Sci., 116 (2012), 1–68, arXiv: 1107.0874 | DOI | MR | Zbl

[5] Boalch P., “Geometry and braiding of {S}tokes data; fission and wild character varieties”, Ann. of Math., 179 (2014), 301–365, arXiv: 1111.6228 | DOI | MR | Zbl

[6] Boalch P., Yamakawa D., Twisted wild character varieties, arXiv: 1512.08091

[7] Crawley-Boevey W., “On matrices in prescribed conjugacy classes with no common invariant subspace and sum zero”, Duke Math. J., 118 (2003), 339–352, arXiv: math.RA/0103101 | DOI | MR | Zbl

[8] de Cataldo M. A. A., Hausel T., Migliorini L., “Topology of Hitchin systems and Hodge theory of character varieties: the case $A_1$”, Ann. of Math., 175 (2012), 1329–1407, arXiv: 1004.1420 | DOI | MR | Zbl

[9] Friedman R., Morgan J. W., Smooth four-manifolds and complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 27, Springer-Verlag, Berlin, 1994 | DOI | MR | Zbl

[10] Gong C., Lu J., Tan S.-L., “On families of complex curves over $\mathbb{P}^1$ with two singular fibers”, Osaka J. Math., 53 (2016), 83–99 | MR | Zbl

[11] Hitchin N. J., “The self-duality equations on a Riemann surface”, Proc. London Math. Soc., 55 (1987), 59–126 | DOI | MR | Zbl

[12] Hitchin N. J., “Lie groups and Teichmüller space”, Topology, 31 (1992), 449–473 | DOI | MR | Zbl

[13] Ivanics P., Stipsicz A., Szabó S., “Two-dimensional moduli spaces of rank 2 Higgs bundles over $\mathbb{C}P^1$ with one irregular singular point”, J. Geom. Phys., 130 (2018), 184–212, arXiv: 1604.08503 | DOI | MR | Zbl

[14] Ivanics P., Stipsicz A., Szabó S., “Hitchin fibrations on moduli of irregular {H}iggs bundles and motivic wall-crossing”, J. Pure Appl. Algebra, 223 (2019), 3989–4064, arXiv: 1710.09922 | DOI | MR | Zbl

[15] Kodaira K., “On compact analytic surfaces. II”, Ann. of Math., 77 (1963), 563–626 | DOI | MR | Zbl

[16] Kraft H., Procesi C., “Closures of conjugacy classes of matrices are normal”, Invent. Math., 53 (1979), 227–247 | DOI | MR | Zbl

[17] Kronheimer P. B., Nakajima H., “Yang–Mills instantons on ALE gravitational instantons”, Math. Ann., 288 (1990), 263–307 | DOI | MR | Zbl

[18] Miranda R., “Persson's list of singular fibers for a rational elliptic surface”, Math. Z., 205 (1990), 191–211 | DOI | MR | Zbl

[19] Nitsure N., “Moduli space of semistable pairs on a curve”, Proc. London Math. Soc., 62 (1991), 275–300 | DOI | MR | Zbl

[20] Persson U., “Configurations of Kodaira fibers on rational elliptic surfaces”, Math. Z., 205 (1990), 1–47 | DOI | MR | Zbl

[21] Simpson C., “Harmonic bundles on noncompact curves”, J. Amer. Math. Soc., 3 (1990), 713–770 | DOI | MR | Zbl

[22] Simpson C., “The dual boundary complex of the ${\rm SL}_2$ character variety of a punctured sphere”, Ann. Fac. Sci. Toulouse Math., 25 (2016), 317–361, arXiv: 1504.05395 | DOI | MR | Zbl

[23] Stipsicz A. I., Szabó Z., Szilárd A., “Singular fibers in elliptic fibrations on the rational elliptic surface”, Period. Math. Hungar., 54 (2007), 137–162 | DOI | MR | Zbl

[24] Szabó S., “The birational geometry of unramified irregular {H}iggs bundles on curves”, Internat. J. Math., 28 (2017), 1750045, 32 pp., arXiv: 1502.02003 | DOI | MR | Zbl

[25] Szabó S., Perversity equals weight for Painlevé spaces, arXiv: 1802.03798

[26] Tan S.-L., “Chern numbers of a singular fiber, modular invariants and isotrivial families of curves”, Acta Math. Vietnam., 35 (2010), 159–172 | MR | Zbl