@article{SIGMA_2019_15_a84,
author = {P\'eter Ivanics and Andr\'as I. Stipsicz and Szil\'ard Szab\'o},
title = {Hitchin {Fibrations} on {Two-Dimensional} {Moduli} {Spaces} of {Irregular} {Higgs} {Bundles} with {One} {Singular} {Fiber}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a84/}
}
TY - JOUR AU - Péter Ivanics AU - András I. Stipsicz AU - Szilárd Szabó TI - Hitchin Fibrations on Two-Dimensional Moduli Spaces of Irregular Higgs Bundles with One Singular Fiber JO - Symmetry, integrability and geometry: methods and applications PY - 2019 VL - 15 UR - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a84/ LA - en ID - SIGMA_2019_15_a84 ER -
%0 Journal Article %A Péter Ivanics %A András I. Stipsicz %A Szilárd Szabó %T Hitchin Fibrations on Two-Dimensional Moduli Spaces of Irregular Higgs Bundles with One Singular Fiber %J Symmetry, integrability and geometry: methods and applications %D 2019 %V 15 %U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a84/ %G en %F SIGMA_2019_15_a84
Péter Ivanics; András I. Stipsicz; Szilárd Szabó. Hitchin Fibrations on Two-Dimensional Moduli Spaces of Irregular Higgs Bundles with One Singular Fiber. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a84/
[1] Alekseev A., Malkin A., Meinrenken E., “Lie group valued moment maps”, J. Differential Geom., 48 (1998), 445–495, arXiv: dg-ga/9707021 | DOI | MR | Zbl
[2] Biquard O., Boalch P., “Wild non-abelian Hodge theory on curves”, Compos. Math., 140 (2004), 179–204, arXiv: math.DG/0111098 | DOI | MR | Zbl
[3] Boalch P., Hyperkahler manifolds and nonabelian Hodge theory of (irregular) curves, arXiv: 1203.6607
[4] Boalch P., “Simply-laced isomonodromy systems”, Publ. Math. Inst. Hautes Études Sci., 116 (2012), 1–68, arXiv: 1107.0874 | DOI | MR | Zbl
[5] Boalch P., “Geometry and braiding of {S}tokes data; fission and wild character varieties”, Ann. of Math., 179 (2014), 301–365, arXiv: 1111.6228 | DOI | MR | Zbl
[6] Boalch P., Yamakawa D., Twisted wild character varieties, arXiv: 1512.08091
[7] Crawley-Boevey W., “On matrices in prescribed conjugacy classes with no common invariant subspace and sum zero”, Duke Math. J., 118 (2003), 339–352, arXiv: math.RA/0103101 | DOI | MR | Zbl
[8] de Cataldo M. A. A., Hausel T., Migliorini L., “Topology of Hitchin systems and Hodge theory of character varieties: the case $A_1$”, Ann. of Math., 175 (2012), 1329–1407, arXiv: 1004.1420 | DOI | MR | Zbl
[9] Friedman R., Morgan J. W., Smooth four-manifolds and complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 27, Springer-Verlag, Berlin, 1994 | DOI | MR | Zbl
[10] Gong C., Lu J., Tan S.-L., “On families of complex curves over $\mathbb{P}^1$ with two singular fibers”, Osaka J. Math., 53 (2016), 83–99 | MR | Zbl
[11] Hitchin N. J., “The self-duality equations on a Riemann surface”, Proc. London Math. Soc., 55 (1987), 59–126 | DOI | MR | Zbl
[12] Hitchin N. J., “Lie groups and Teichmüller space”, Topology, 31 (1992), 449–473 | DOI | MR | Zbl
[13] Ivanics P., Stipsicz A., Szabó S., “Two-dimensional moduli spaces of rank 2 Higgs bundles over $\mathbb{C}P^1$ with one irregular singular point”, J. Geom. Phys., 130 (2018), 184–212, arXiv: 1604.08503 | DOI | MR | Zbl
[14] Ivanics P., Stipsicz A., Szabó S., “Hitchin fibrations on moduli of irregular {H}iggs bundles and motivic wall-crossing”, J. Pure Appl. Algebra, 223 (2019), 3989–4064, arXiv: 1710.09922 | DOI | MR | Zbl
[15] Kodaira K., “On compact analytic surfaces. II”, Ann. of Math., 77 (1963), 563–626 | DOI | MR | Zbl
[16] Kraft H., Procesi C., “Closures of conjugacy classes of matrices are normal”, Invent. Math., 53 (1979), 227–247 | DOI | MR | Zbl
[17] Kronheimer P. B., Nakajima H., “Yang–Mills instantons on ALE gravitational instantons”, Math. Ann., 288 (1990), 263–307 | DOI | MR | Zbl
[18] Miranda R., “Persson's list of singular fibers for a rational elliptic surface”, Math. Z., 205 (1990), 191–211 | DOI | MR | Zbl
[19] Nitsure N., “Moduli space of semistable pairs on a curve”, Proc. London Math. Soc., 62 (1991), 275–300 | DOI | MR | Zbl
[20] Persson U., “Configurations of Kodaira fibers on rational elliptic surfaces”, Math. Z., 205 (1990), 1–47 | DOI | MR | Zbl
[21] Simpson C., “Harmonic bundles on noncompact curves”, J. Amer. Math. Soc., 3 (1990), 713–770 | DOI | MR | Zbl
[22] Simpson C., “The dual boundary complex of the ${\rm SL}_2$ character variety of a punctured sphere”, Ann. Fac. Sci. Toulouse Math., 25 (2016), 317–361, arXiv: 1504.05395 | DOI | MR | Zbl
[23] Stipsicz A. I., Szabó Z., Szilárd A., “Singular fibers in elliptic fibrations on the rational elliptic surface”, Period. Math. Hungar., 54 (2007), 137–162 | DOI | MR | Zbl
[24] Szabó S., “The birational geometry of unramified irregular {H}iggs bundles on curves”, Internat. J. Math., 28 (2017), 1750045, 32 pp., arXiv: 1502.02003 | DOI | MR | Zbl
[25] Szabó S., Perversity equals weight for Painlevé spaces, arXiv: 1802.03798
[26] Tan S.-L., “Chern numbers of a singular fiber, modular invariants and isotrivial families of curves”, Acta Math. Vietnam., 35 (2010), 159–172 | MR | Zbl