Knapp–Stein Type Intertwining Operators for Symmetric Pairs II. – The Translation Principle and Intertwining Operators for Spinors
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a symmetric pair $(G,H)$ of reductive groups we extend to a large class of generalized principal series representations our previous construction of meromorphic families of symmetry breaking operators. These operators intertwine between a possibly vector-valued principal series of $G$ and one for $H$ and are given explicitly in terms of their integral kernels. As an application we give a complete classification of symmetry breaking operators from spinors on a Euclidean space to spinors on a hyperplane, intertwining for a double cover of the conformal group of the hyperplane.
Keywords: Knapp–Stein intertwiners, intertwining operators, symmetry breaking operators, symmetric pairs, translation principle.
Mots-clés : principal series
@article{SIGMA_2019_15_a83,
     author = {Jan Frahm and Bent {\O}rsted},
     title = {Knapp{\textendash}Stein {Type} {Intertwining} {Operators} for {Symmetric} {Pairs~II.} {\textendash} {The} {Translation} {Principle} and {Intertwining} {Operators} for {Spinors}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a83/}
}
TY  - JOUR
AU  - Jan Frahm
AU  - Bent Ørsted
TI  - Knapp–Stein Type Intertwining Operators for Symmetric Pairs II. – The Translation Principle and Intertwining Operators for Spinors
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a83/
LA  - en
ID  - SIGMA_2019_15_a83
ER  - 
%0 Journal Article
%A Jan Frahm
%A Bent Ørsted
%T Knapp–Stein Type Intertwining Operators for Symmetric Pairs II. – The Translation Principle and Intertwining Operators for Spinors
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a83/
%G en
%F SIGMA_2019_15_a83
Jan Frahm; Bent Ørsted. Knapp–Stein Type Intertwining Operators for Symmetric Pairs II. – The Translation Principle and Intertwining Operators for Spinors. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a83/

[1] Branson T., Ólafsson G., Ørsted B., “Spectrum generating operators and intertwining operators for representations induced from a maximal parabolic subgroup”, J. Funct. Anal., 135 (1996), 163–205 | DOI | MR | Zbl

[2] Clerc J. L., Ørsted B., “Conformal covariance for the powers of the Dirac operator”, J. Lie Theory (to appear) , arXiv: 1409.4983

[3] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. II, Robert E. Krieger Publishing Co. Inc., Melbourne, Fla., 1981 | MR

[4] Fischmann M., Juhl A., Somberg P., “Conformal symmetry breaking differential operators on differential forms”, Mem. Amer. Math. Soc. (to appear)

[5] Juhl A., Families of conformally covariant differential operators, $Q$-curvature and holography, Progress in Mathematics, 275, Birkhäuser Verlag, Basel, 2009 | DOI | MR | Zbl

[6] Knapp A. W., Representation theory of semisimple groups. An overview based on examples, Princeton Mathematical Series, 36, Princeton University Press, Princeton, NJ, 1986 | DOI | MR | Zbl

[7] Kobayashi T., “A program for branching problems in the representation theory of real reductive groups”, Representations of reductive groups, Progr. Math., 312, Birkhäuser/Springer, Cham, 2015, 277–322, arXiv: 1509.08861 | DOI | MR | Zbl

[8] Kobayashi T., Kubo T., Pevzner M., Conformal symmetry breaking operators for differential forms on spheres, Lecture Notes in Math., 2170, Springer, Singapore, 2016 | DOI | MR | Zbl

[9] Kobayashi T., Ørsted B., Somberg P., Souček V., “Branching laws for Verma modules and applications in parabolic geometry. I”, Adv. Math., 285 (2015), 1796–1852, arXiv: 1305.6040 | DOI | MR | Zbl

[10] Kobayashi T., Speh B., Symmetry breaking for representations of rank one orthogonal groups, Mem. Amer. Math. Soc., 238, 2015, v+110 pp., arXiv: 1310.3213 | DOI | MR

[11] Kobayashi T., Speh B., Symmetry breaking for representations of rank one orthogonal groups II, Lecture Notes in Math., 2234, Springer, Singapore, 2018, arXiv: 1801.00158 | DOI | MR | Zbl

[12] Möllers J., Ørsted B., “Estimates for the restriction of automorphic forms on hyperbolic manifolds to compact geodesic cycles”, Int. Math. Res. Not., 2017 (2017), 3209–3236, arXiv: 1308.0298 | DOI | MR | Zbl

[13] Möllers J., Ørsted B., “The compact picture of symmetry breaking operators for rank one orthogonal and unitary groups”, Pacific J. Math. (to appear) , arXiv: 1404.1171 | MR

[14] Möllers J., Ørsted B., Oshima Y., “Knapp–Stein type intertwining operators for symmetric pairs”, Adv. Math., 294 (2016), 256–306, arXiv: 1309.3904 | DOI | MR | Zbl

[15] Möllers J., Ørsted B., Zhang G., “On boundary value problems for some conformally invariant differential operators”, Comm. Partial Differential Equations, 41 (2016), 609–643, arXiv: 1503.01695 | DOI | MR | Zbl

[16] Wallach N. R., “Cyclic vectors and irreducibility for principal series representations”, Trans. Amer. Math. Soc., 158 (1971), 107–113 | DOI | MR | Zbl