Mots-clés : principal series
@article{SIGMA_2019_15_a83,
author = {Jan Frahm and Bent {\O}rsted},
title = {Knapp{\textendash}Stein {Type} {Intertwining} {Operators} for {Symmetric} {Pairs~II.} {\textendash} {The} {Translation} {Principle} and {Intertwining} {Operators} for {Spinors}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a83/}
}
TY - JOUR AU - Jan Frahm AU - Bent Ørsted TI - Knapp–Stein Type Intertwining Operators for Symmetric Pairs II. – The Translation Principle and Intertwining Operators for Spinors JO - Symmetry, integrability and geometry: methods and applications PY - 2019 VL - 15 UR - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a83/ LA - en ID - SIGMA_2019_15_a83 ER -
%0 Journal Article %A Jan Frahm %A Bent Ørsted %T Knapp–Stein Type Intertwining Operators for Symmetric Pairs II. – The Translation Principle and Intertwining Operators for Spinors %J Symmetry, integrability and geometry: methods and applications %D 2019 %V 15 %U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a83/ %G en %F SIGMA_2019_15_a83
Jan Frahm; Bent Ørsted. Knapp–Stein Type Intertwining Operators for Symmetric Pairs II. – The Translation Principle and Intertwining Operators for Spinors. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a83/
[1] Branson T., Ólafsson G., Ørsted B., “Spectrum generating operators and intertwining operators for representations induced from a maximal parabolic subgroup”, J. Funct. Anal., 135 (1996), 163–205 | DOI | MR | Zbl
[2] Clerc J. L., Ørsted B., “Conformal covariance for the powers of the Dirac operator”, J. Lie Theory (to appear) , arXiv: 1409.4983
[3] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. II, Robert E. Krieger Publishing Co. Inc., Melbourne, Fla., 1981 | MR
[4] Fischmann M., Juhl A., Somberg P., “Conformal symmetry breaking differential operators on differential forms”, Mem. Amer. Math. Soc. (to appear)
[5] Juhl A., Families of conformally covariant differential operators, $Q$-curvature and holography, Progress in Mathematics, 275, Birkhäuser Verlag, Basel, 2009 | DOI | MR | Zbl
[6] Knapp A. W., Representation theory of semisimple groups. An overview based on examples, Princeton Mathematical Series, 36, Princeton University Press, Princeton, NJ, 1986 | DOI | MR | Zbl
[7] Kobayashi T., “A program for branching problems in the representation theory of real reductive groups”, Representations of reductive groups, Progr. Math., 312, Birkhäuser/Springer, Cham, 2015, 277–322, arXiv: 1509.08861 | DOI | MR | Zbl
[8] Kobayashi T., Kubo T., Pevzner M., Conformal symmetry breaking operators for differential forms on spheres, Lecture Notes in Math., 2170, Springer, Singapore, 2016 | DOI | MR | Zbl
[9] Kobayashi T., Ørsted B., Somberg P., Souček V., “Branching laws for Verma modules and applications in parabolic geometry. I”, Adv. Math., 285 (2015), 1796–1852, arXiv: 1305.6040 | DOI | MR | Zbl
[10] Kobayashi T., Speh B., Symmetry breaking for representations of rank one orthogonal groups, Mem. Amer. Math. Soc., 238, 2015, v+110 pp., arXiv: 1310.3213 | DOI | MR
[11] Kobayashi T., Speh B., Symmetry breaking for representations of rank one orthogonal groups II, Lecture Notes in Math., 2234, Springer, Singapore, 2018, arXiv: 1801.00158 | DOI | MR | Zbl
[12] Möllers J., Ørsted B., “Estimates for the restriction of automorphic forms on hyperbolic manifolds to compact geodesic cycles”, Int. Math. Res. Not., 2017 (2017), 3209–3236, arXiv: 1308.0298 | DOI | MR | Zbl
[13] Möllers J., Ørsted B., “The compact picture of symmetry breaking operators for rank one orthogonal and unitary groups”, Pacific J. Math. (to appear) , arXiv: 1404.1171 | MR
[14] Möllers J., Ørsted B., Oshima Y., “Knapp–Stein type intertwining operators for symmetric pairs”, Adv. Math., 294 (2016), 256–306, arXiv: 1309.3904 | DOI | MR | Zbl
[15] Möllers J., Ørsted B., Zhang G., “On boundary value problems for some conformally invariant differential operators”, Comm. Partial Differential Equations, 41 (2016), 609–643, arXiv: 1503.01695 | DOI | MR | Zbl
[16] Wallach N. R., “Cyclic vectors and irreducibility for principal series representations”, Trans. Amer. Math. Soc., 158 (1971), 107–113 | DOI | MR | Zbl