@article{SIGMA_2019_15_a82,
author = {Tomoki Ohsawa},
title = {Collective {Heavy} {Top} {Dynamics}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a82/}
}
Tomoki Ohsawa. Collective Heavy Top Dynamics. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a82/
[1] Audin M., Spinning tops. A course on integrable systems, Cambridge Studies in Advanced Mathematics, 51, Cambridge University Press, Cambridge, 1996 | MR | Zbl
[2] Austin M. A., Krishnaprasad P. S., Wang L. S., “Almost Poisson integration of rigid body systems”, J. Comput. Phys., 107 (1993), 105–117 | DOI | MR | Zbl
[3] Bogfjellmo G., Collective symplectic integrators on ${S}_2^n \times {T}^*\mathbb{R}^m$, arXiv: 1809.06231
[4] Guillemin V., Sternberg S., “The moment map and collective motion”, Ann. Physics, 127 (1980), 220–253 | DOI | MR | Zbl
[5] Guillemin V., Sternberg S., Symplectic techniques in physics, 2nd ed., Cambridge University Press, Cambridge, 1990 | MR | Zbl
[6] Hairer E., Lubich C., Wanner G., Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations, Springer Series in Computational Mathematics, 31, 2nd ed., Springer-Verlag, Berlin, 2006 | DOI | MR | Zbl
[7] Holm D. D., Marsden J. E., Ratiu T. S., “The Euler–Poincaré equations and semidirect products with applications to continuum theories”, Adv. Math., 137 (1998), 1–81, arXiv: chao-dyn/9801015 | DOI | MR | Zbl
[8] Holmes P. J., Marsden J. E., “Horseshoes and Arnold diffusion for Hamiltonian systems on Lie groups”, Indiana Univ. Math. J., 32 (1983), 273–309 | DOI | MR | Zbl
[9] Kowalevski S., “Sur le probleme de la rotation d'un corps solide autour d'un point fixe”, Acta Math., 12 (1889), 177–232 | DOI | MR
[10] Leimkuhler B., Reich S., Simulating Hamiltonian dynamics, Cambridge Monographs on Applied and Computational Mathematics, 14, Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl
[11] Marsden J. E., Ratiu T. S., Introduction to mechanics and symmetry. A basic exposition of classical mechanical systems, Texts in Applied Mathematics, 17, 2nd ed., Springer-Verlag, New York, 1999 | DOI | MR | Zbl
[12] Marsden J. E., Ratiu T. S., Weinstein A., “Reduction and Hamiltonian structures on duals of semidirect product Lie algebras”, Fluids and Plasmas: Geometry and Dynamics (Boulder, Colo., 1983), Contemp. Math., 28, Amer. Math. Soc., Providence, RI, 1984, 55–100 | DOI | MR
[13] Marsden J. E., Ratiu T. S., Weinstein A., “Semidirect products and reduction in mechanics”, Trans. Amer. Math. Soc., 281 (1984), 147–177 | DOI | MR | Zbl
[14] McLachlan R. I., Modin K., Verdier O., “Collective symplectic integrators”, Nonlinearity, 27 (2014), 1525–1542, arXiv: 1308.6620 | DOI | MR | Zbl
[15] McLachlan R. I., Modin K., Verdier O., “Collective Lie–Poisson integrators on $\mathbb{R}^3$”, IMA J. Numer. Anal., 35 (2015), 546–560, arXiv: 1307.2387 | DOI | MR | Zbl
[16] McLachlan R. I., Modin K., Verdier O., “Geometry of discrete-time spin systems”, J. Nonlinear Sci., 26 (2016), 1507–1523, arXiv: 1505.04035 | DOI | MR | Zbl
[17] McLachlan R. I., Modin K., Verdier O., “A minimal-variable symplectic integrator on spheres”, Math. Comp., 86 (2017), 2325–2344, arXiv: 1402.3334 | DOI | MR | Zbl