Collective Heavy Top Dynamics
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct a Poisson map $\mathbf{M}\colon T^{*}\mathbb{C}^{2} \to \mathfrak{se}(3)^{*}$ with respect to the canonical Poisson bracket on $T^{*}\mathbb{C}^{2} \cong T^{*}\mathbb{R}^{4}$ and the $(-)$-Lie–Poisson bracket on the dual $\mathfrak{se}(3)^{*}$ of the Lie algebra of the special Euclidean group $\mathsf{SE}(3)$. The essential part of this map is the momentum map associated with the cotangent lift of the natural right action of the semidirect product Lie group $\mathsf{SU}(2) \ltimes \mathbb{C}^{2}$ on $\mathbb{C}^{2}$. This Poisson map gives rise to a canonical Hamiltonian system on $T^{*}\mathbb{C}^{2}$ whose solutions are mapped by $\mathbf{M}$ to solutions of the heavy top equations. We show that the Casimirs of the heavy top dynamics and the additional conserved quantity of the Lagrange top correspond to the Noether conserved quantities associated with certain symmetries of the canonical Hamiltonian system. We also construct a Lie–Poisson integrator for the heavy top dynamics by combining the Poisson map $\mathbf{M}$ with a simple symplectic integrator, and demonstrate that the integrator exhibits either exact or near conservation of the conserved quantities of the Kovalevskaya top.
Keywords: heavy top dynamics, collectivization, momentum maps, Lie–Poisson integrator.
@article{SIGMA_2019_15_a82,
     author = {Tomoki Ohsawa},
     title = {Collective {Heavy} {Top} {Dynamics}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a82/}
}
TY  - JOUR
AU  - Tomoki Ohsawa
TI  - Collective Heavy Top Dynamics
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a82/
LA  - en
ID  - SIGMA_2019_15_a82
ER  - 
%0 Journal Article
%A Tomoki Ohsawa
%T Collective Heavy Top Dynamics
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a82/
%G en
%F SIGMA_2019_15_a82
Tomoki Ohsawa. Collective Heavy Top Dynamics. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a82/

[1] Audin M., Spinning tops. A course on integrable systems, Cambridge Studies in Advanced Mathematics, 51, Cambridge University Press, Cambridge, 1996 | MR | Zbl

[2] Austin M. A., Krishnaprasad P. S., Wang L. S., “Almost Poisson integration of rigid body systems”, J. Comput. Phys., 107 (1993), 105–117 | DOI | MR | Zbl

[3] Bogfjellmo G., Collective symplectic integrators on ${S}_2^n \times {T}^*\mathbb{R}^m$, arXiv: 1809.06231

[4] Guillemin V., Sternberg S., “The moment map and collective motion”, Ann. Physics, 127 (1980), 220–253 | DOI | MR | Zbl

[5] Guillemin V., Sternberg S., Symplectic techniques in physics, 2nd ed., Cambridge University Press, Cambridge, 1990 | MR | Zbl

[6] Hairer E., Lubich C., Wanner G., Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations, Springer Series in Computational Mathematics, 31, 2nd ed., Springer-Verlag, Berlin, 2006 | DOI | MR | Zbl

[7] Holm D. D., Marsden J. E., Ratiu T. S., “The Euler–Poincaré equations and semidirect products with applications to continuum theories”, Adv. Math., 137 (1998), 1–81, arXiv: chao-dyn/9801015 | DOI | MR | Zbl

[8] Holmes P. J., Marsden J. E., “Horseshoes and Arnold diffusion for Hamiltonian systems on Lie groups”, Indiana Univ. Math. J., 32 (1983), 273–309 | DOI | MR | Zbl

[9] Kowalevski S., “Sur le probleme de la rotation d'un corps solide autour d'un point fixe”, Acta Math., 12 (1889), 177–232 | DOI | MR

[10] Leimkuhler B., Reich S., Simulating Hamiltonian dynamics, Cambridge Monographs on Applied and Computational Mathematics, 14, Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl

[11] Marsden J. E., Ratiu T. S., Introduction to mechanics and symmetry. A basic exposition of classical mechanical systems, Texts in Applied Mathematics, 17, 2nd ed., Springer-Verlag, New York, 1999 | DOI | MR | Zbl

[12] Marsden J. E., Ratiu T. S., Weinstein A., “Reduction and Hamiltonian structures on duals of semidirect product Lie algebras”, Fluids and Plasmas: Geometry and Dynamics (Boulder, Colo., 1983), Contemp. Math., 28, Amer. Math. Soc., Providence, RI, 1984, 55–100 | DOI | MR

[13] Marsden J. E., Ratiu T. S., Weinstein A., “Semidirect products and reduction in mechanics”, Trans. Amer. Math. Soc., 281 (1984), 147–177 | DOI | MR | Zbl

[14] McLachlan R. I., Modin K., Verdier O., “Collective symplectic integrators”, Nonlinearity, 27 (2014), 1525–1542, arXiv: 1308.6620 | DOI | MR | Zbl

[15] McLachlan R. I., Modin K., Verdier O., “Collective Lie–Poisson integrators on $\mathbb{R}^3$”, IMA J. Numer. Anal., 35 (2015), 546–560, arXiv: 1307.2387 | DOI | MR | Zbl

[16] McLachlan R. I., Modin K., Verdier O., “Geometry of discrete-time spin systems”, J. Nonlinear Sci., 26 (2016), 1507–1523, arXiv: 1505.04035 | DOI | MR | Zbl

[17] McLachlan R. I., Modin K., Verdier O., “A minimal-variable symplectic integrator on spheres”, Math. Comp., 86 (2017), 2325–2344, arXiv: 1402.3334 | DOI | MR | Zbl