One Parameter Family of Jordanian Twists
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose an explicit generalization of the Jordanian twist proposed in $r$-symmetrized form by Giaquinto and Zhang. It is proved that this generalization satisfies the $2$-cocycle condition. We present explicit formulas for the corresponding star product and twisted coproduct. Finally, we show that our generalization coincides with the twist obtained from the simple Jordanian twist by twisting by a $1$-cochain.
Keywords: noncommutative geometry, Jordanian twist.
@article{SIGMA_2019_15_a81,
     author = {Daniel Meljanac and Stjepan Meljanac and Zoran \v{S}koda and Rina \v{S}trajn},
     title = {One {Parameter} {Family} of {Jordanian} {Twists}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a81/}
}
TY  - JOUR
AU  - Daniel Meljanac
AU  - Stjepan Meljanac
AU  - Zoran Škoda
AU  - Rina Štrajn
TI  - One Parameter Family of Jordanian Twists
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a81/
LA  - en
ID  - SIGMA_2019_15_a81
ER  - 
%0 Journal Article
%A Daniel Meljanac
%A Stjepan Meljanac
%A Zoran Škoda
%A Rina Štrajn
%T One Parameter Family of Jordanian Twists
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a81/
%G en
%F SIGMA_2019_15_a81
Daniel Meljanac; Stjepan Meljanac; Zoran Škoda; Rina Štrajn. One Parameter Family of Jordanian Twists. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a81/

[1] Borowiec A., Meljanac D., Meljanac S., Pachoł A., “Interpolations between Jordanian twists induced by coboundary twists”, SIGMA, 15 (2019), 054, 22 pp., arXiv: 1812.05535 | DOI | MR | Zbl

[2] Borowiec A., Pachoł A., “$\kappa$-Minkowski spacetime as the result of Jordanian twist deformation”, Phys. Rev. D, 79 (2009), 045012, 11 pp., arXiv: 0812.0576 | DOI

[3] Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1994 | MR | Zbl

[4] Coll V., Gerstenhaber M., Giaquinto A., “An explicit deformation formula with noncommuting derivations”, Ring Theory 1989 (Ramat Gan and Jerusalem, 1988/1989), Israel Math. Conf. Proc., 1, Weizmann, Jerusalem, 1989, 396–403 | MR

[5] Demidov E. E., Manin Yu.I., Mukhin E. E., Zhdanovich D. V., “Nonstandard quantum deformations of ${\rm GL}(n)$ and constant solutions of the Yang–Baxter equation”, Progr. Theoret. Phys. Suppl., 102 (1990), 203–218 | DOI | MR | Zbl

[6] Dimitrijević M., Jonke L., Pachoł A., “Gauge theory on twisted $\kappa$-Minkowski: old problems and possible solutions”, SIGMA, 10 (2014), 063, 22 pp., arXiv: 1403.1857 | DOI | MR | Zbl

[7] Drinfel'd V.G., “Hopf algebras and the quantum Yang–Baxter equation”, Soviet Math. Dokl., 32 (1985), 254–258 | MR

[8] Etingof P., Kazhdan D., “Quantization of Lie bialgebras. I”, Selecta Math. (N.S.), 2 (1996), 1–41, arXiv: q-alg/9506005 | DOI | MR | Zbl

[9] Etingof P., Schiffmann O., Lectures on quantum groups, Lectures in Math. Phys., 2nd ed., International Press, Somerville, MA, 2002 | MR | Zbl

[10] Giaquinto A., Zhang J. J., “Bialgebra actions, twists, and universal deformation formulas”, J. Pure Appl. Algebra, 128 (1998), 133–151, arXiv: hep-th/9411140 | DOI | MR | Zbl

[11] Govindarajan T. R., Gupta K. S., Harikumar E., Meljanac S., Meljanac D., “Twisted statistics in $\kappa$-Minkowski spacetime”, Phys. Rev. D, 77 (2008), 105010, 6 pp., arXiv: 0802.1576 | DOI | MR

[12] Gräbe H.-G., Vlassov A. T., “On a formula of Coll–Gerstenhaber–Giaquinto”, J. Geom. Phys., 28 (1998), 129–142 | DOI | MR | Zbl

[13] Hoare B., van Tongeren S. J., “On jordanian deformations of ${\rm AdS}_5$ and supergravity”, J. Phys. A: Math. Theor., 49 (2016), 434006, 22 pp., arXiv: 1605.03554 | DOI | MR | Zbl

[14] Jurić T., Kovačević D., Meljanac S., “$\kappa$-deformed phase space, Hopf algebroid and twisting”, SIGMA, 10 (2014), 106, 18 pp., arXiv: 1402.0397 | DOI | MR | Zbl

[15] Jurić T., Meljanac S., Pikutić D., “Realizations of $\kappa$-Minkowski space, Drinfeld twists and related symmetry algebra”, Eur. Phys. J. C Part. Fields, 75 (2015), 528, 16 pp., arXiv: 1506.04955 | DOI

[16] Jurić T., Meljanac S., Pikutić D., “Families of vector-like deformations of relativistic quantum phase spaces, twists and symmetries”, Eur. Phys. J. C Part. Fields, 77 (2017), 830, 12 pp., arXiv: 1709.04745 | DOI

[17] Jurić T., Meljanac S., Štrajn R., “$\kappa$-Poincaré–Hopf algebra and Hopf algebroid structure of phase space from twist”, Phys. Lett. A, 377 (2013), 2472–2476, arXiv: 1303.0994 | DOI | MR | Zbl

[18] Jurić T., Meljanac S., Štrajn R., “Twists, realizations and {H}opf algebroid structure of $\kappa$-deformed phase space”, Internat. J. Modern Phys. A, 29 (2014), 1450022, 32 pp., arXiv: 1305.3088 | DOI | MR | Zbl

[19] Khoroshkin S. M., Pop I. I., Samsonov M. E., Stolin A. A., Tolstoy V. N., “On some Lie bialgebra structures on polynomial algebras and their quantization”, Comm. Math. Phys., 282 (2008), 625–662, arXiv: 0706.1651 | DOI | MR | Zbl

[20] Khoroshkin S. M., Stolin A. A., Tolstoy V. N., “Deformation of {Y}angian $Y({\rm sl}_2)$”, Comm. Algebra, 26 (1998), 1041–1055, arXiv: q-alg/9511005 | DOI | MR | Zbl

[21] Khoroshkin S. M., Stolin A. A., Tolstoy V. N., “$q$-power function over $q$-commuting variables and deformed $XXX$ and $XXZ$ chains”, Phys. Atomic Nuclei, 64 (2001), 2173–2178, arXiv: math.QA/0012207 | DOI | MR

[22] Kovačević D., Meljanac S., Pachoł A., Štrajn R., “Generalized Poincaré algebras, Hopf algebras and $\kappa$-Minkowski spacetime”, Phys. Lett. B, 711 (2012), 122–127, arXiv: 1202.3305 | DOI | MR

[23] Kulish P. P., Stolin A. A., “Deformed Yangians and integrable models”, Czechoslovak J. Phys., 47 (1997), 1207–1212, arXiv: q-alg/9708024 | DOI | MR | Zbl

[24] Lukierski J., Nowicki A., Ruegg H., “New quantum Poincaré algebra and $\kappa$-deformed field theory”, Phys. Lett. B, 293 (1992), 344–352 | DOI | MR | Zbl

[25] Lukierski J., Ruegg H., Nowicki A., Tolstoy V. N., “$q$-deformation of Poincaré algebra”, Phys. Lett. B, 264 (1991), 331–338 | DOI | MR

[26] Lyubashenko V. V., “Hopf algebras and vector-symmetries”, Russian Math. Surveys, 41:5 (1986), 153–154 | DOI | MR | Zbl

[27] Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl

[28] Meljanac D., Meljanac S., Mignemi S., Štrajn R., “$\kappa$-deformed phase spaces, Jordanian twists, Lorentz–Weyl algebra”, Phys. Rev. D, 99 (2019), 126012, 12 pp., arXiv: 1903.08679 | DOI

[29] Meljanac S., Krešić-Jurić S., “Differential structure on $\kappa$-Minkowski space, and $\kappa$-Poincaré algebra”, Internat. J. Modern Phys. A, 26 (2011), 3385–3402, arXiv: 1004.4647 | DOI | MR | Zbl

[30] Meljanac S., Meljanac D., Mercati F., Pikutić D., “Noncommutative spaces and Poincaré symmetry”, Phys. Lett. B, 766 (2017), 181–185, arXiv: 1610.06716 | DOI | Zbl

[31] Meljanac S., Meljanac D., Pachoł A., Pikutić D., “Remarks on simple interpolation between Jordanian twists”, J. Phys. A: Math. Theor., 50 (2017), 265201, 11 pp., arXiv: 1612.07984 | DOI | MR | Zbl

[32] Meljanac S., Meljanac D., Samsarov A., Stojić M., “$\kappa$-deformed Snyder spacetime”, Modern Phys. Lett. A, 25 (2010), 579–590, arXiv: 0912.5087 | DOI | MR | Zbl

[33] Meljanac S., Pachoł A., Pikutić D., “Twisted conformal algebra related to $\kappa$-Minkowski space”, Phys. Rev. D, 92 (2015), 105015, 8 pp., arXiv: 1509.02115 | DOI | MR

[34] Meljanac S., Stojić M., “New realizations of Lie algebra kappa-deformed Euclidean space”, Eur. Phys. J. C Part. Fields, 47 (2006), 531–539, arXiv: hep-th/0605133 | DOI | MR | Zbl

[35] Ogievetsky O., “Hopf structures on the Borel subalgebra of ${\rm sl}(2)$”, Rend. Circ. Mat. Palermo (2) Suppl., 1994, 185–199 | MR | Zbl

[36] Pachoł A., Vitale P., “$\kappa$-Minkowski star product in any dimension from symplectic realization”, J. Phys. A: Math. Theor., 48 (2015), 445202, 16 pp., arXiv: 1507.03523 | DOI | MR | Zbl

[37] Stolin A. A., Kulish P. P., “New rational solutions of Yang–Baxter equation and deformed Yangians”, Czechoslovak J. Phys., 47 (1997), 123–129, arXiv: q-alg/9608011 | DOI | MR | Zbl

[38] Tolstoy V. N., Quantum deformations of relativistic symmetries, arXiv: 0704.0081

[39] Tolstoy V. N., Twisted quantum deformations of Lorentz and Poincaré algebras, arXiv: 0712.3962