A Note on the Derivatives of Isotropic Positive Definite Functions on the Hilbert Sphere
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this note we give a recursive formula for the derivatives of isotropic positive definite functions on the Hilbert sphere. We then use it to prove a conjecture stated by Trübner and Ziegel, which says that for a positive definite function on the Hilbert sphere to be in $C^{2\ell}([0,\pi])$, it is necessary and sufficient for its $\infty$-Schoenberg sequence to satisfy $\sum\limits_{m=0}^{\infty}a_m m^{\ell}\infty$.
Keywords: positive definite, isotropic, Hilbert sphere, Schoenberg sequences.
@article{SIGMA_2019_15_a80,
     author = {Janin J\"ager},
     title = {A {Note} on the {Derivatives} of {Isotropic} {Positive} {Definite} {Functions} on the {Hilbert} {Sphere}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a80/}
}
TY  - JOUR
AU  - Janin Jäger
TI  - A Note on the Derivatives of Isotropic Positive Definite Functions on the Hilbert Sphere
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a80/
LA  - en
ID  - SIGMA_2019_15_a80
ER  - 
%0 Journal Article
%A Janin Jäger
%T A Note on the Derivatives of Isotropic Positive Definite Functions on the Hilbert Sphere
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a80/
%G en
%F SIGMA_2019_15_a80
Janin Jäger. A Note on the Derivatives of Isotropic Positive Definite Functions on the Hilbert Sphere. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a80/

[1] Arafat A., Gregori P., Porcu E., “Schoenberg coefficients and curvature at the origin of continuous isotropic positive definite kernels on spheres”, Statist. Probab. Lett., 156 (2020), 108618, 6 pp., arXiv: 1807.02363 | DOI | MR

[2] Baxter B. J.C., Hubbert S., “Radial basis functions for the sphere”, Recent Progress in Multivariate Approximation (Witten-Bommerholz, 2000), Internat. Ser. Numer. Math., 137, Birkhäuser, Basel, 2001, 33–47 | DOI | MR | Zbl

[3] Beatson R. K., zu Castell W., “Dimension hopping and families of strictly positive definite zonal basis functions on spheres”, J. Approx. Theory, 221 (2017), 22–37, arXiv: 1510.08658 | DOI | MR | Zbl

[4] Beatson R. K., zu Castell W., “Thinplate splines on the sphere”, SIGMA, 14 (2018), 083, 22 pp., arXiv: 1801.01313 | DOI | MR | Zbl

[5] Beatson R. K., zu Castell W., Xu Y., “A Pólya criterion for (strict) positive-definiteness on the sphere”, IMA J. Numer. Anal., 34 (2014), 550–568, arXiv: 1110.2437 | DOI | MR | Zbl

[6] Berg C., Peron A. P., Porcu E., “Schoenberg's theorem for real and complex Hilbert spheres revisited”, J. Approx. Theory, 228 (2018), 58–78, arXiv: 1701.07214 | DOI | MR | Zbl

[7] Bingham N. H., Symons T. L., “Gaussian random fields on the sphere and sphere cross line”, Stochastic Process. Appl. (to appear) , arXiv: 1812.02103 | DOI

[8] Bissiri P. G., Menegatto V. A., Porcu E., “Relations between Schoenberg coefficients on real and complex spheres of different dimensions”, SIGMA, 15 (2019), 004, 12 pp., arXiv: 1807.08184 | DOI | MR | Zbl

[9] Chen D., Menegatto V. A., Sun X., “A necessary and sufficient condition for strictly positive definite functions on spheres”, Proc. Amer. Math. Soc., 131 (2003), 2733–2740 | DOI | MR | Zbl

[10] Fornberg B., Flyer N., A primer on radial basis functions with applications to the geosciences, CBMS-NSF Regional Conference Series in Applied Mathematics, 87, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2015 | DOI | MR | Zbl

[11] Gneiting T., “Strictly and non-strictly positive definite functions on spheres”, Bernoulli, 19 (2013), 1327–1349, arXiv: 1111.7077 | DOI | MR | Zbl

[12] Gradshteyn I. S., Ryzhik I. M., Table of integrals, series, and products, 8th ed., Academic Press Inc., San Diego, CA, 2014 | MR

[13] Guinness J., Fuentes M., “Isotropic covariance functions on spheres: some properties and modeling considerations”, J. Multivariate Anal., 143 (2016), 143–152 | DOI | MR | Zbl

[14] Hubbert S., Lê Gia Q. T., Morton T. M., Spherical radial basis functions, theory and applications, SpringerBriefs in Mathematics, Springer, Cham, 2015 | DOI | MR | Zbl

[15] Jäger J., Klein A., Buhmann M., Skrandies W., “Reconstruction of electroencephalographic data using radial basis functions”, Clinical Neurophysiology, 127 (2016), 1978–1983 | DOI

[16] Lang A., Schwab C., “Isotropic Gaussian random fields on the sphere: regularity, fast simulation and stochastic partial differential equations”, Ann. Appl. Probab., 25 (2015), 3047–3094, arXiv: 1305.1170 | DOI | MR | Zbl

[17] Menegatto V. A., “Strictly positive definite kernels on the Hilbert sphere”, Appl. Anal., 55 (1994), 91–101 | DOI | MR | Zbl

[18] Nie Z., Ma C., “Isotropic positive definite functions on spheres generated from those in Euclidean spaces”, Proc. Amer. Math. Soc., 147 (2019), 3047–3056 | DOI | MR | Zbl

[19] Schoenberg I. J., “Positive definite functions on spheres”, Duke Math. J., 9 (1942), 96–108 | DOI | MR | Zbl

[20] Trübner M., Ziegel J. F., “Derivatives of isotropic positive definite functions on spheres”, Proc. Amer. Math. Soc., 145 (2017), 3017–3031, arXiv: 1603.06727 | DOI | MR | Zbl

[21] Xu Y., “Positive definite functions on the unit sphere and integrals of {J}acobi polynomials”, Proc. Amer. Math. Soc., 146 (2018), 2039–2048, arXiv: 1701.00787 | DOI | MR | Zbl

[22] Ziegel J., “Convolution roots and differentiability of isotropic positive definite functions on spheres”, Proc. Amer. Math. Soc., 142 (2014), 2063–2077, arXiv: 1201.5833 | DOI | MR | Zbl

[23] zu Castell W., Filbir F., “Radial basis functions and corresponding zonal series expansions on the sphere”, J. Approx. Theory, 134 (2005), 65–79 | DOI | MR | Zbl