@article{SIGMA_2019_15_a8,
author = {Atsushi Nakayashiki},
title = {On {Reducible} {Degeneration} of {Hyperelliptic} {Curves} and {Soliton} {Solutions}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a8/}
}
Atsushi Nakayashiki. On Reducible Degeneration of Hyperelliptic Curves and Soliton Solutions. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a8/
[1] Abenda S., “On a family of KP multi-line solitons associated to rational degenerations of real hyperelliptic curves and to the finite non-periodic Toda hierarchy”, J. Geom. Phys., 119 (2017), 112–138, arXiv: 1605.00995 | DOI | MR | Zbl
[2] Abenda S., Grinevich P. G., “Rational degenerations of M-curves, totally positive Grassmannians and KP2-solitons”, Comm. Math. Phys., 361 (2018), 1029–1081, arXiv: 1506.00563 | DOI | MR | Zbl
[3] Abenda S., Grinevich P. G., “Real soliton lattices of the KP-II and desingularization of spectral curves: the ${\rm Gr}^{{\rm TP}}(2,4)$ case”, Proc. Steklov Inst. Math., 302 (2018), 1–15, arXiv: 1803.10968 | DOI | MR
[4] Abenda S., Grinevich P. G., KP theory, plane-bipartite networks in the disc and rational degenerations of M-curvess, arXiv: 1801.00208
[5] Abenda S., Grinevich P. G., Reducible M-curves for Le-networks in the totally-nonnegative Grassmannian and KP-II multiline solitons, arXiv: 1805.05641
[6] Chakravarty S., Kodama Y., “Classification of the line-soliton solutions of KPII”, J. Phys. A: Math. Theor., 41 (2008), 275209, 33 pp., arXiv: 0710.1456 | DOI | MR | Zbl
[7] Chakravarty S., Kodama Y., “Soliton solutions of the KP equation and application to shallow water waves”, Stud. Appl. Math., 123 (2009), 83–151, arXiv: 0902.4433 | DOI | MR | Zbl
[8] Date E., Kashiwara M., Jimbo M., Miwa T., “Transformation groups for soliton equations”, Nonlinear Integrable Systems – Classical Theory and Quantum Theory (Kyoto, 1981), eds. M. Jimbo, T. Miwa, World Sci. Publishing, Singapore, 1983, 39–119 | MR
[9] Fay J. D., Theta functions on Riemann surfaces, Lecture Notes in Math., 352, Springer-Verlag, Berlin–New York, 1973 | DOI | MR | Zbl
[10] Freeman N. C., Nimmo J. J. C., “Soliton solutions of the Korteweg–de Vries and Kadomtsev–Petviashvili equations: the Wronskian technique”, Phys. Lett. A, 95 (1983), 1–3 | DOI | MR
[11] Kawamoto N., Namikawa Y., Tsuchiya A., Yamada Y., “Geometric realization of conformal field theory on Riemann surfaces”, Comm. Math. Phys., 116 (1988), 247–308 | DOI | MR | Zbl
[12] Kodama Y., KP solitons and the Grassmannians. Combinatorics and geometry of two-dimensional wave patterns, SpringerBriefs in Mathematical Physics, 22, Springer, Singapore, 2017 | DOI | MR | Zbl
[13] Kodama Y., Williams L. K., “KP solitons, total positivity, and cluster algebras”, Proc. Natl. Acad. Sci. USA, 108 (2011), 8984–8989, arXiv: 1105.4170 | DOI | MR | Zbl
[14] Krichever I. M., “Methods of algebraic geometry in the theory of non-linear equations”, Russian Math. Surveys, 32:6 (1977), 185–213 | DOI | Zbl
[15] Mulase M., “Algebraic theory of the KP equations”, Perspectives in Mathematical Physics, Conf. Proc., Lecture Notes Math. Phys., III, eds. R. Penner, S. T. Yau, Int. Press, Cambridge, MA, 1994, 151–217 | MR | Zbl
[16] Nakayashiki A., “Sigma function as a tau function”, Int. Math. Res. Not., 2010 (2010), 373–394, arXiv: 0904.0846 | DOI | MR | Zbl
[17] Nakayashiki A., “Tau function approach to theta functions”, Int. Math. Res. Not., 2016 (2016), 5202–5248, arXiv: 1504.01186 | DOI | MR | Zbl
[18] Nakayashiki A., “Degeneration of trigonal curves and solutions of the KP-hierarchy”, Nonlinearity, 31 (2018), 3567–3590, arXiv: 1708.03440 | DOI | MR | Zbl
[19] Sato M., “Soliton equations as dynamical systems on infinite dimensional Grassmann manifold”, Nonlinear Partial Differential Equations in Applied Science, Lecture Notes in Numerical and Applied Analysis, eds. P. D. Lax, H. Fujita, G. Strang, North-Holland, Amsterdam; Kinokuniya, Tokyo, 1982, 259–271 | DOI | MR
[20] Sato M., Lecture note of M. Sato (1984–1985 spring), note taken by T. Umeda, Lecture Note on Mathematical Sciences, 5, RIMS, Kyoto University, 1989 (in Japanese)
[21] Sato M., Noumi M., Soliton equations and universal Grassmann manifold, Mathematical Lecture Note, 18, Sophia University, Tokyo, 1984 (in Japanese) | Zbl
[22] Satsuma J., “Exact solutions of a nonlinear diffusion equation”, J. Phys. Soc. Japan, 50 (1981), 1423–1424 | DOI | MR
[23] Segal G., Wilson G., “Loop groups and equations of KdV type”, Inst. Hautes Études Sci. Publ. Math., 61 (1985), 5–65 | DOI | MR | Zbl