Mots-clés : odd-even binomial coefficients.
@article{SIGMA_2019_15_a79,
author = {Elba Garcia-Failde and Reinier Kramer and Danilo Lewa\'nski and Sergey Shadrin},
title = {Half-Spin {Tautological} {Relations} and {Faber's} {Proportionalities} of {Kappa} {Classes}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a79/}
}
TY - JOUR AU - Elba Garcia-Failde AU - Reinier Kramer AU - Danilo Lewański AU - Sergey Shadrin TI - Half-Spin Tautological Relations and Faber's Proportionalities of Kappa Classes JO - Symmetry, integrability and geometry: methods and applications PY - 2019 VL - 15 UR - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a79/ LA - en ID - SIGMA_2019_15_a79 ER -
%0 Journal Article %A Elba Garcia-Failde %A Reinier Kramer %A Danilo Lewański %A Sergey Shadrin %T Half-Spin Tautological Relations and Faber's Proportionalities of Kappa Classes %J Symmetry, integrability and geometry: methods and applications %D 2019 %V 15 %U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a79/ %G en %F SIGMA_2019_15_a79
Elba Garcia-Failde; Reinier Kramer; Danilo Lewański; Sergey Shadrin. Half-Spin Tautological Relations and Faber's Proportionalities of Kappa Classes. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a79/
[1] Buryak A., Shadrin S., “A new proof of Faber's intersection number conjecture”, Adv. Math., 228 (2011), 22–42, arXiv: 0912.5115 | DOI | MR | Zbl
[2] Clader E., Janda F., Wang X., Zakharov D., Topological recursion relations from Pixton's formula, arXiv: 1704.02011
[3] Faber C., A non-vanishing result for the tautological ring of $\mathcal{M}_g$, arXiv: math.AG/9711219
[4] Faber C., “A conjectural description of the tautological ring of the moduli space of curves”, Moduli of Curves and Abelian Varieties, Aspects Math., E33, Friedr. Vieweg, Braunschweig, 1999, 109–129, arXiv: math.AG/9711218 | DOI | MR
[5] Faber C., Pandharipande R., “Relative maps and tautological classes”, J. Eur. Math. Soc. (JEMS), 7 (2005), 13–49, arXiv: math.AG/0304485 | DOI | MR | Zbl
[6] Getzler E., Pandharipande R., “Virasoro constraints and the Chern classes of the Hodge bundle”, Nuclear Phys. B, 530 (1998), 701–714, arXiv: math.AG/9805114 | DOI | MR | Zbl
[7] Givental A. B., “Gromov–Witten invariants and quantization of quadratic Hamiltonians”, Mosc. Math. J., 1 (2001), 551–568, arXiv: math.AG/0108100 | DOI | MR | Zbl
[8] Goulden I. P., Jackson D. M., Vakil R., “The moduli space of curves, double Hurwitz numbers, and Faber's intersection number conjecture”, Ann. Comb., 15 (2011), 381–436, arXiv: math.AG/0611659 | DOI | MR | Zbl
[9] Kramer R., Labib F., Lewanski D., Shadrin S., “The tautological ring of ${\mathcal M}_{g,n}$ via Pandharipande–Pixton–Zvonkine $r$-spin relations”, Algebr. Geom., 5 (2018), 703–727, arXiv: 1703.00681 | DOI | MR | Zbl
[10] Lin Y. J., Zhou J., “Topological recursion relations from Pixton relations”, Acta Math. Sin. (Engl. Ser.), 33 (2017), 470–494 | DOI | MR | Zbl
[11] Liu K., Xu H., “A proof of the Faber intersection number conjecture”, J. Differential Geom., 83 (2009), 313–335, arXiv: 0803.2204 | DOI | MR | Zbl
[12] Looijenga E., “On the tautological ring of ${\mathcal M}_g$”, Invent. Math., 121 (1995), 411–419, arXiv: alg-geom/9501010 | DOI | MR | Zbl
[13] Mumford D., “Towards an enumerative geometry of the moduli space of curves”, Arithmetic and Geometry, v. II, Progr. Math., 36, Birkhäuser Boston, Boston, MA, 1983, 271–328 | DOI | MR
[14] Pandharipande R., “A calculus for the moduli space of curves”, Algebraic Geometry (Salt Lake City, 2015), Proc. Sympos. Pure Math., 97, Amer. Math. Soc., Providence, RI, 2018, 459–487, arXiv: 1603.05151 | DOI | MR
[15] Pandharipande R., Pixton A., Zvonkine D., “Relations on $\overline{\mathcal M}_{g,n}$ via $3$-spin structures”, J. Amer. Math. Soc., 28 (2015), 279–309, arXiv: 1303.1043 | DOI | MR | Zbl
[16] Pandharipande R., Pixton A., Zvonkine D., “Tautological relations via $r$-spin structures”, J. Algebraic Geom., 28 (2019), 439–496, arXiv: 1607.00978 | DOI | MR | Zbl
[17] Pixton A., The tautological ring of the moduli space of curves, Ph.D. Thesis, Princeton University, 2013 | MR
[18] Polishchuk A., Vaintrob A., “Algebraic construction of Witten's top Chern class”, Advances in Algebraic Geometry Motivated by Physics (Lowell, MA, 2000), Contemp. Math., 276, Amer. Math. Soc., Providence, RI, 2001, 229–249, arXiv: math.AG/0011032 | DOI | MR | Zbl
[19] Tavakol M., The moduli space of curves and its invariants, arXiv: 1610.09589
[20] Vakil R., “The moduli space of curves and its tautological ring”, Notices Amer. Math. Soc., 50 (2003), 647–658 https://www.ams.org/notices/200306/fea-vakil.pdf | MR | Zbl
[21] Witten E., “Algebraic geometry associated with matrix models of two-dimensional gravity”, Topological Methods in Modern Mathematics (Stony Brook, NY, 1991), Publish or Perish, Houston, TX, 1993, 235–269 https://www.sns.ias.edu/content/algebraic-geometry-associated-matrix-models-two-dimensional-gravity | MR | Zbl
[22] Zvonkine D., “An introduction to moduli spaces of curves and their intersection theory”, Handbook of Teichmüller Theory, v. III, IRMA Lect. Math. Theor. Phys., 17, Eur. Math. Soc., Zürich, 2012, 667–716 | DOI | MR | Zbl