Mots-clés : Lax–Sato equations, Casimir invariants, $R$-structure, Lie–Poisson structure, conformal structures
@article{SIGMA_2019_15_a78,
author = {Oksana Ye. Hentosh and Yarema A. Prikarpatsky and Denis Blackmore and Anatolij K. Prikarpatski},
title = {Dispersionless {Multi-Dimensional} {Integrable} {Systems} and {Related} {Conformal} {Structure} {Generating} {Equations} of {Mathematical} {Physics}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a78/}
}
TY - JOUR AU - Oksana Ye. Hentosh AU - Yarema A. Prikarpatsky AU - Denis Blackmore AU - Anatolij K. Prikarpatski TI - Dispersionless Multi-Dimensional Integrable Systems and Related Conformal Structure Generating Equations of Mathematical Physics JO - Symmetry, integrability and geometry: methods and applications PY - 2019 VL - 15 UR - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a78/ LA - en ID - SIGMA_2019_15_a78 ER -
%0 Journal Article %A Oksana Ye. Hentosh %A Yarema A. Prikarpatsky %A Denis Blackmore %A Anatolij K. Prikarpatski %T Dispersionless Multi-Dimensional Integrable Systems and Related Conformal Structure Generating Equations of Mathematical Physics %J Symmetry, integrability and geometry: methods and applications %D 2019 %V 15 %U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a78/ %G en %F SIGMA_2019_15_a78
Oksana Ye. Hentosh; Yarema A. Prikarpatsky; Denis Blackmore; Anatolij K. Prikarpatski. Dispersionless Multi-Dimensional Integrable Systems and Related Conformal Structure Generating Equations of Mathematical Physics. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a78/
[1] Adams M. R., Harnad J., Previato E., “Isospectral Hamiltonian flows in finite and infinite dimensions. I. Generalized Moser systems and moment maps into loop algebras”, Comm. Math. Phys., 117 (1988), 451–500 | DOI | MR | Zbl
[2] Adler V. E., Shabat A. B., “Model equation of the theory of solitons”, Theoret. and Math. Phys., 153 (2007), 1373–1387, arXiv: 0706.0075 | DOI | MR | Zbl
[3] Blackmore D., Hentosh O. Ye., Prykarpatski A. K., “The novel Lie-algebraic approach to studying integrable heavenly type multi-dimensional dynamical systems”, J. Gen. Lie Theory Appl., 11 (2017), 1000287, 19 pp. | DOI
[4] Blackmore D., Prykarpatsky A. K., Samoylenko V. Hr., Nonlinear dynamical systems of mathematical physics. Spectral and symplectic integrability analysis, World Sci. Publ. Co. Pte. Ltd., Hackensack, NJ, 2011 | DOI | MR | Zbl
[5] Błaszak M., “Classical $R$-matrices on Poisson algebras and related dispersionless systems”, Phys. Lett. A, 297 (2002), 191–195 | DOI | MR
[6] Bogdanov L. V., Dryuma V. S., Manakov S. V., “Dunajski generalization of the second heavenly equation: dressing method and the hierarchy”, J. Phys. A: Math. Theor., 40 (2007), 14383–14393, arXiv: 0707.1675 | DOI | MR | Zbl
[7] Doubrov B., Ferapontov E. V., “On the integrability of symplectic Monge–Ampère equations”, J. Geom. Phys., 60 (2010), 1604–1616, arXiv: 0910.3407 | DOI | MR | Zbl
[8] Doubrov B., Ferapontov E. V., Kruglikov B., Novikov V. S., “On a class of integrable systems of Monge–Ampère type”, J. Math. Phys., 58 (2017), 063508, 12 pp., arXiv: 1701.02270 | DOI | MR | Zbl
[9] Dunajski M., “Anti-self-dual four-manifolds with a parallel real spinor”, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 458 (2002), 1205–1222, arXiv: math.DG/0102225 | DOI | MR | Zbl
[10] Dunajski M., Mason L. J., Tod P., “Einstein–Weyl geometry, the dKP equation and twistor theory”, J. Geom. Phys., 37 (2001), 63–93, arXiv: math.DG/0004031 | DOI | MR | Zbl
[11] Faddeev L. D., Takhtajan L. A., Hamiltonian methods in the theory of solitons, Classics in Mathematics, Springer, Berlin, 2007 | DOI | MR | Zbl
[12] Ferapontov E. V., Kruglikov B. S., “Dispersionless integrable systems in 3D and Einstein–Weyl geometry”, J. Differential Geom., 97 (2014), 215–254, arXiv: 1208.2728 | DOI | MR | Zbl
[13] Harnad J., Winternitz P., “Classical and quantum integrable systems in $\widetilde{\mathfrak{gl}}(2)^{+*}$ and separation of variables”, Comm. Math. Phys., 172 (1995), 263–285, arXiv: hep-th/9312035 | DOI | MR | Zbl
[14] Harnad J., Wisse M. A., “Moment maps to loop algebras, classical $R$-matrices and integrable systems”, Quantum Groups Integrable Models and Statistical Systems (Kingston, Canada, July 13–17, 1992), eds. J. LeTourneux, L. Vinet, World Scientific, Singapore, 1993, 105–117, arXiv: hep-th/9301104
[15] Harnad J., Wisse M. A., “Loop algebra moment maps and Hamiltonian models for the {P}ainlevé transcendants”, Mechanics Day (Waterloo, ON, 1992), Fields Inst. Commun., 7, Amer. Math. Soc., Providence, RI, 1996, 155–169, arXiv: hep-th/9305027 | MR | Zbl
[16] Hentosh O. Ye., Prykarpatsky Ya. A., “Lax–Sato integrable heavenly equations on functional supermanifolds and their Lie-algebraic structure”, Eur. J. Math. (to appear) | DOI
[17] Hentosh O. Ye., Prykarpatsky Ya. A., Blackmore D., Prykarpatski A. K., “Lie-algebraic structure of Lax–Sato integrable heavenly equations and the Lagrange–d'Alembert principle”, J. Geom. Phys., 120 (2017), 208–227 | DOI | MR | Zbl
[18] Mañas M., Medina E., Martínez Alonso L., “On the Whitham hierarchy: dressing scheme, string equations and additional symmetries”, J. Phys. A: Math. Gen., 39 (2006), 2349–2381, arXiv: nlin.SI/0509017 | DOI | MR | Zbl
[19] Manakov S. V., Santini P. M., “On the solutions of the second heavenly and Pavlov equations”, J. Phys. A: Math. Theor., 42 (2009), 404013, 11 pp., arXiv: 0812.3323 | DOI | MR | Zbl
[20] Martínes Alonso L., Shabat A. B., “Hydrodynamic reductions and solutions of a universal hierarchy”, Theoret. and Math. Phys., 140 (2004), 1073–1085, arXiv: nlin.SI/0312043 | DOI | MR | Zbl
[21] Morozov O. I., “A two-component generalization of the integrable rdDym equation”, SIGMA, 8 (2012), 051, 5 pp., arXiv: 1205.1149 | DOI | MR | Zbl
[22] Ovsienko V., “Bi-Hamiltonian nature of the equation $u_{tx}=u_{xy}u_y-u_{yy}u_x$”, Adv. Pure Appl. Math., 1 (2010), 7–17, arXiv: 0802.1818 | DOI | MR | Zbl
[23] Ovsienko V., Roger C., “Looped cotangent Virasoro algebra and non-linear integrable systems in dimension $2+1$”, Comm. Math. Phys., 273 (2007), 357–378, arXiv: math-ph/0602043 | DOI | MR | Zbl
[24] Plebański J. F., “Some solutions of complex Einstein equations”, J. Math. Phys., 16 (1975), 2395–2402 | DOI | MR
[25] Pressley A., Segal G., Loop groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1986 | MR
[26] Reyman A. G., Semenov-Tian-Shansky M. A., Integrable systems, Computer Research Institute, M.–Izhevsk, 2003
[27] Sergyeyev A., Szablikowski B. M., “Central extensions of cotangent universal hierarchy: $(2+1)$-dimensional bi-Hamiltonian systems”, Phys. Lett. A, 372 (2008), 7016–7023, arXiv: 0807.1294 | DOI | MR | Zbl
[28] Sheftel M. B., Yaz{\i}cı D., “Bi-Hamiltonian representation, symmetries and integrals of mixed heavenly and Husain systems”, J. Nonlinear Math. Phys., 17 (2010), 453–484, arXiv: 0904.3981 | DOI | MR | Zbl
[29] Sheftel M. B., Yaz{\i}cı D., “Recursion operators and tri-Hamiltonian structure of the first heavenly equation of Plebański”, SIGMA, 12 (2016), 091, 17 pp., arXiv: 1712.01549 | DOI | MR | Zbl
[30] Szablikowski B. M., “Hierarchies of Manakov–Santini type by means of Rota–Baxter and other identities”, SIGMA, 12 (2016), 022, 14 pp., arXiv: 1512.05817 | DOI | MR | Zbl