Modular Group Representations in Combinatorial Quantization with Non-Semisimple Hopf Algebras
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\Sigma_{g,n}$ be a compact oriented surface of genus $g$ with $n$ open disks removed. The algebra $\mathcal{L}_{g,n}(H)$ was introduced by Alekseev–Grosse–Schomerus and Buffenoir–Roche and is a combinatorial quantization of the moduli space of flat connections on $\Sigma_{g,n}$. Here we focus on the two building blocks $\mathcal{L}_{0,1}(H)$ and $\mathcal{L}_{1,0}(H)$ under the assumption that the gauge Hopf algebra $H$ is finite-dimensional, factorizable and ribbon, but not necessarily semisimple. We construct a projective representation of $\mathrm{SL}_2(\mathbb{Z})$, the mapping class group of the torus, based on $\mathcal{L}_{1,0}(H)$ and we study it explicitly for $H = \overline{U}_q(\mathfrak{sl}(2))$. We also show that it is equivalent to the representation constructed by Lyubashenko and Majid.
Keywords: combinatorial quantization, factorizable Hopf algebra, modular group, restricted quantum group.
@article{SIGMA_2019_15_a76,
     author = {Matthieu Faitg},
     title = {Modular {Group} {Representations} in {Combinatorial} {Quantization} with {Non-Semisimple} {Hopf} {Algebras}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a76/}
}
TY  - JOUR
AU  - Matthieu Faitg
TI  - Modular Group Representations in Combinatorial Quantization with Non-Semisimple Hopf Algebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a76/
LA  - en
ID  - SIGMA_2019_15_a76
ER  - 
%0 Journal Article
%A Matthieu Faitg
%T Modular Group Representations in Combinatorial Quantization with Non-Semisimple Hopf Algebras
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a76/
%G en
%F SIGMA_2019_15_a76
Matthieu Faitg. Modular Group Representations in Combinatorial Quantization with Non-Semisimple Hopf Algebras. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a76/

[1] Aghaei N., Gainutdinov A. M., Pawelkiewicz M., Schomerus V., Combinatorial quantisation of ${\rm GL}(1|1)$ Chern–Simons theory I: The torus, arXiv: 1811.09123

[2] Alekseev A. Yu., “Integrability in the Hamiltonian Chern–Simons theory”, St. Petersburg Math. J., 6 (1995), 241–253, arXiv: hep-th/9311074 | MR

[3] Alekseev A. Yu., Grosse H., Schomerus V., “Combinatorial quantization of the Hamiltonian Chern–Simons theory. I”, Comm. Math. Phys., 172 (1995), 317–358, arXiv: hep-th/9403066 | DOI | MR | Zbl

[4] Alekseev A. Yu., Grosse H., Schomerus V., “Combinatorial quantization of the Hamiltonian Chern–Simons theory. II”, Comm. Math. Phys., 174 (1996), 561–604, arXiv: hep-th/9408097 | DOI | MR | Zbl

[5] Alekseev A. Yu., Schomerus V., “Representation theory of Chern–Simons observables”, Duke Math. J., 85 (1996), 447–510, arXiv: q-alg/9503016 | DOI | MR | Zbl

[6] Alekseev A. Yu., Schomerus V., Quantum moduli spaces of flat connections,, arXiv: q-alg/9612037

[7] Arike Y., “A construction of symmetric linear functions on the restricted quantum group $\overline U_q(\mathfrak{sl}_2)$”, Osaka J. Math., 47 (2010), 535–557, arXiv: 0807.0052 | DOI | MR | Zbl

[8] Atiyah M. F., Bott R., “The Yang–Mills equations over Riemann surfaces”, Philos. Trans. Roy. Soc. London Ser. A, 308 (1983), 523–615 | DOI | MR | Zbl

[9] Baseilhac S., Roche Ph., Unrestricted moduli algebras: the case of punctured spheres, in preparation

[10] Ben-Zvi D., Brochier A., Jordan D., “Integrating quantum groups over surfaces”, J. Topology, 11 (2018), 874–917, arXiv: 1501.04652 | DOI | MR | Zbl

[11] Blanchet C., Beliakova A., Gainutdinov A. M., Modified trace is a symmetrised integral, arXiv: 1801.00321

[12] Brochier A., Jordan D., “Fourier transform for quantum $D$-modules via the punctured torus mapping class group”, Quantum Topol., 8 (2017), 361–379, arXiv: 1403.1841 | DOI | MR | Zbl

[13] Buffenoir E., Noui K., Roche Ph., “Hamiltonian quantization of Chern–Simons theory with ${\rm SL}(2,{\mathbb C})$ group”, Classical Quantum Gravity, 19 (2002), 4953–5015, arXiv: hep-th/0202121 | DOI | MR | Zbl

[14] Buffenoir E., Roche Ph., “Two-dimensional lattice gauge theory based on a quantum group”, Comm. Math. Phys., 170 (1995), 669–698, arXiv: hep-th/9405126 | DOI | MR | Zbl

[15] Buffenoir E., Roche Ph., “Link invariants and combinatorial quantization of Hamiltonian Chern–Simons theory”, Comm. Math. Phys., 181 (1996), 331–365, arXiv: q-alg/9507001 | DOI | MR | Zbl

[16] Bullock D., Frohman C., Kania-Bartoszyńska J., “Topological interpretations of lattice gauge field theory”, Comm. Math. Phys., 198 (1998), 47–81, arXiv: q-alg/9710003 | DOI | MR | Zbl

[17] Chekhov L., Mazzocco M., Rubtsov V., “Algebras of quantum monodromy data and character varieties”, Geometry and Physics, A Festschrift in honour of Nigel Hitchin, v. I, Oxford University Press, Oxford, 2018, 39–68, arXiv: 1705.01447 | DOI | MR | Zbl

[18] Curtis C. W., Reiner I., Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, 11, Interscience Publishers, New York–London, 1962 | MR | Zbl

[19] Drinfeld V. G., “Almost cocommutative Hopf algebras”, Leningrad Math. J., 1 (1990), 321–342 | MR | Zbl

[20] Etingof P., Gelaki S., Nikshych D., Ostrik V., Tensor categories, Mathematical Surveys and Monographs, 205, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR | Zbl

[21] Faitg M., “A note on symmetric linear forms and traces on the restricted quantum group $\overline{U}_q(\mathfrak{sl}(2))$”, Osaka J. Math. (to appear) , arXiv: 1801.07524 | Zbl

[22] Faitg M., “Projective representations of mapping class groups in combinatorial quantization”, Comm. Math. Phys. (to appear) , arXiv: 1812.00446 | DOI | Zbl

[23] Farb B., Margalit D., A primer on mapping class groups, Princeton Mathematical Series, 49, Princeton University Press, Princeton, NJ, 2012 | MR

[24] Feigin B. L., Gainutdinov A. M., Semikhatov A. M., Tipunin I. Yu., “Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center”, Comm. Math. Phys., 265 (2006), 47–93, arXiv: hep-th/0504093 | DOI | MR | Zbl

[25] Fock V. V., Rosly A. A., “Flat connections and polyubles”, Theoret. and Math. Phys., 95 (1993), 526–534 | DOI | MR | Zbl

[26] Fock V. V., Rosly A. A., “Poisson structure on moduli of flat connections on Riemann surfaces and the $r$-matrix”, Moscow Seminar in Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 191, Amer. Math. Soc., Providence, RI, 1999, 67–86, arXiv: math.QA/9802054 | DOI | MR | Zbl

[27] Gainutdinov A. M., Tipunin I. Yu., “Radford, Drinfeld and Cardy boundary states in the $(1,p)$ logarithmic conformal field models”, J. Phys A: Math. Theor., 42 (2009), 315207, 30 pp., arXiv: 0711.3430 | DOI | MR | Zbl

[28] Goldman W. M., “Invariant functions on Lie groups and Hamiltonian flows of surface group representations”, Invent. Math., 85 (1986), 263–302 | DOI | MR | Zbl

[29] Ibanez E., Evaluable Jones–Wenzl idempotents at root of unity and modular representation on the center of $\overline{U}_q {\mathfrak{sl}}(2)$, Ph.D. Thesis, Université de Montpellier, France, 2016, arXiv: 1604.03681

[30] Kassel C., Quantum groups, Graduate Texts in Mathematics, 155, Springer-Verlag, New York, 1995 | DOI | MR | Zbl

[31] Kondo H., Saito Y., “Indecomposable decomposition of tensor products of modules over the restricted quantum universal enveloping algebra associated to ${\mathfrak{sl}}_2$”, J. Algebra, 330 (2011), 103–129, arXiv: 0901.4221 | DOI | MR | Zbl

[32] Lyubashenko V., “Invariants of $3$-manifolds and projective representations of mapping class groups via quantum groups at roots of unity”, Comm. Math. Phys., 172 (1995), 467–516, arXiv: hep-th/9405167 | DOI | MR | Zbl

[33] Lyubashenko V., Majid S., “Braided groups and quantum Fourier transform”, J. Algebra, 166 (1994), 506–528 | DOI | MR | Zbl

[34] Meusburger C., Wise D. K., Hopf algebra gauge theory on a ribbon graph, arXiv: 1512.03966

[35] Montgomery S., Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, 82, Amer. Math. Soc., Providence, RI, 1993 | DOI | MR | Zbl

[36] Radford D. E., Hopf algebras, Series on Knots and Everything, 49, World Sci. Publ. Co. Pte. Ltd., Hackensack, NJ, 2012 | DOI | MR | Zbl

[37] Reshetikhin N. Yu., Semenov-Tian-Shansky M. A., “Quantum $R$-matrices and factorization problems”, J. Geom. Phys., 5 (1988), 533–550 | DOI | MR | Zbl

[38] Schomerus V., Deformed gauge symmetry in local quantum physics, Habilitation Thesis, Hamburg, Germany, 1998

[39] Suter R., “Modules over $\overline{U}_q(\mathfrak{sl}_2)$”, Comm. Math. Phys., 163 (1994), 359–393 | DOI | MR | Zbl