Momentum Sections in Hamiltonian Mechanics and Sigma Models
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show a constrained Hamiltonian system and a gauged sigma model have a structure of a momentum section and a Hamiltonian Lie algebroid theory recently introduced by Blohmann and Weinstein. We propose a generalization of a momentum section on a pre-multisymplectic manifold by considering gauged sigma models on higher-dimensional manifolds.
Keywords: symplectic geometry, Hamiltonian mechanics, nonlinear sigma model.
Mots-clés : Lie algebroid
@article{SIGMA_2019_15_a75,
     author = {Noriaki Ikeda},
     title = {Momentum {Sections} in {Hamiltonian} {Mechanics} and {Sigma} {Models}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a75/}
}
TY  - JOUR
AU  - Noriaki Ikeda
TI  - Momentum Sections in Hamiltonian Mechanics and Sigma Models
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a75/
LA  - en
ID  - SIGMA_2019_15_a75
ER  - 
%0 Journal Article
%A Noriaki Ikeda
%T Momentum Sections in Hamiltonian Mechanics and Sigma Models
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a75/
%G en
%F SIGMA_2019_15_a75
Noriaki Ikeda. Momentum Sections in Hamiltonian Mechanics and Sigma Models. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a75/

[1] Blohmann C., Fernandes M. C. B., Weinstein A., “Groupoid symmetry and constraints in general relativity”, Commun. Contemp. Math., 15 (2013), 1250061, 25 pp., arXiv: 1003.2857 | DOI | MR | Zbl

[2] Blohmann C., Weinstein A., Hamiltonian Lie algebroids, arXiv: 1811.11109

[3] Bouwknegt P., Bugden M., Klimčík C., Wright K., “Hidden isometry of “{T}-duality without isometry””, J. High Energy Phys., 2017:8 (2017), 116, 19 pp., arXiv: 1705.09254 | DOI | MR | Zbl

[4] Bursztyn H., Cavalcanti G. R., Gualtieri M., “Reduction of Courant algebroids and generalized complex structures”, Adv. Math., 211 (2007), 726–765, arXiv: math.DG/0509640 | DOI | MR | Zbl

[5] Buscher T. H., “A symmetry of the string background field equations”, Phys. Lett. B, 194 (1987), 59–62 | DOI | MR

[6] Buscher T. H., “Path-integral derivation of quantum duality in nonlinear sigma-models”, Phys. Lett. B, 201 (1988), 466–472 | DOI | MR

[7] Callies M., Frégier Y., Rogers C. L., Zambon M., “Homotopy moment maps”, Adv. Math., 303 (2016), 954–1043, arXiv: 1304.2051 | DOI | MR | Zbl

[8] Cariñena J. F., Crampin M., Ibort L. A., “On the multisymplectic formalism for first order field theories”, Differential Geom. Appl., 1 (1991), 345–374 | DOI | MR | Zbl

[9] Cavalcanti G. R., Gualtieri M., “Generalized complex geometry and T-duality”, A Celebration of the Mathematical Legacy of Raoul Bott, CRM Proc. Lecture Notes, 50, Amer. Math. Soc., Providence, RI, 2010, 341–365, arXiv: 1106.1747 | DOI | MR | Zbl

[10] Chatzistavrakidis A., Deser A., Jonke L., “T-duality without isometry via extended gauge symmetries of 2D sigma models”, J. High Energy Phys., 2016:1 (2016), 154, 20 pp., arXiv: 1509.01829 | DOI | MR | Zbl

[11] Chatzistavrakidis A., Deser A., Jonke L., Strobl T., “Beyond the standard gauging: gauge symmetries of Dirac sigma models”, J. High Energy Phys., 2016:8 (2016), 172, 28 pp., arXiv: 1607.00342 | DOI | MR | Zbl

[12] Chatzistavrakidis A., Deser A., Jonke L., Strobl T., “Gauging as constraining: the universal generalised geometry action in two dimensions”, PoS(CORFU2016), PoS Proc. Sci., 2017, 087, 20 pp., arXiv: 1705.05007 | DOI

[13] Chatzistavrakidis A., Deser A., Jonke L., Strobl T., “Strings in singular space-times and their universal gauge theory”, Ann. Henri Poincaré, 18 (2017), 2641–2692, arXiv: 1608.03250 | DOI | MR | Zbl

[14] Gotay M. J., Isenberg J., Marsden J. E., Montgomery R., Momentum maps and classical relativistic fields. Part I: Covariant field theory, arXiv: physics/9801019

[15] Herman J., Weak moment maps in multisymplectic geometry, arXiv: 1807.01641

[16] Higgins P. J., Mackenzie K., “Algebraic constructions in the category of Lie algebroids”, J. Algebra, 129 (1990), 194–230 | DOI | MR | Zbl

[17] Hull C. M., Spence B., “The geometry of the gauged sigma-model with Wess–Zumino term”, Nuclear Phys. B, 353 (1991), 379–426 | DOI | MR

[18] Ikeda N., “Lectures on AKSZ sigma models for physicists”, Noncommutative Geometry and Physics 4, World Sci. Publ., Hackensack, NJ, 2017, 79–169, arXiv: 1204.3714 | DOI | MR | Zbl

[19] Ikeda N., Strobl T., “On the relation of Lie algebroids to constrained systems and their BV/BFV formulation”, Ann. Henri Poincaré, 20 (2019), 527–541, arXiv: 1803.00080 | DOI | MR | Zbl

[20] Ikeda N., Uchino K., “QP-structures of degree 3 and 4D topological field theory”, Comm. Math. Phys., 303 (2011), 317–330, arXiv: 1004.0601 | DOI | MR | Zbl

[21] Kotov A., Strobl T., “Lie algebroids, gauge theories, and compatible geometrical structures”, Rev. Math. Phys., 31 (2019), 1950015, 31 pp., arXiv: 1603.04490 | DOI | MR | Zbl

[22] Liu Z.-J., Weinstein A., Xu P., “Manin triples for Lie bialgebroids”, J. Differential Geom., 45 (1997), 547–574, arXiv: dg-ga/9508013 | DOI | MR | Zbl

[23] Mackenzie K., Lie groupoids and Lie algebroids in differential geometry, London Mathematical Society Lecture Note Series, 124, Cambridge University Press, Cambridge, 1987 | DOI | MR | Zbl

[24] Madsen T. B., Swann A., “Multi-moment maps”, Adv. Math., 229 (2012), 2287–2309, arXiv: 1012.2048 | DOI | MR | Zbl

[25] Madsen T. B., Swann A., “Closed forms and multi-moment maps”, Geom. Dedicata, 165 (2013), 25–52, arXiv: 1110.6541 | DOI | MR | Zbl

[26] Vaintrob A. Yu., “Lie algebroids and homological vector fields”, Russian Math. Surveys, 52 (1997), 428–429 | DOI | MR | Zbl

[27] Wright K., “Lie algebroid gauging of non-linear sigma models”, J. Geom. Phys., 146 (2019), 103490, 23 pp., arXiv: 1905.00659 | DOI | MR | Zbl