Mots-clés : $q$-Painlevé equations
@article{SIGMA_2019_15_a73,
author = {Yuya Matsuhira and Hajime Nagoya},
title = {Combinatorial {Expressions} for the {Tau} {Functions} of $q${-Painlev\'e} {V} and {III} {Equations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a73/}
}
TY - JOUR AU - Yuya Matsuhira AU - Hajime Nagoya TI - Combinatorial Expressions for the Tau Functions of $q$-Painlevé V and III Equations JO - Symmetry, integrability and geometry: methods and applications PY - 2019 VL - 15 UR - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a73/ LA - en ID - SIGMA_2019_15_a73 ER -
%0 Journal Article %A Yuya Matsuhira %A Hajime Nagoya %T Combinatorial Expressions for the Tau Functions of $q$-Painlevé V and III Equations %J Symmetry, integrability and geometry: methods and applications %D 2019 %V 15 %U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a73/ %G en %F SIGMA_2019_15_a73
Yuya Matsuhira; Hajime Nagoya. Combinatorial Expressions for the Tau Functions of $q$-Painlevé V and III Equations. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a73/
[1] Alday L. F., Gaiotto D., Tachikawa Y., “Liouville correlation functions from four-dimensional gauge theories”, Lett. Math. Phys., 91 (2010), 167–197, arXiv: 0906.3219 | DOI | MR | Zbl
[2] Awata H., Feigin B., Shiraishi J., “Quantum algebraic approach to refined topological vertex”, J. High Energy Phys., 2012:3 (2012), 041, 35 pp., arXiv: 1112.6074 | DOI | MR | Zbl
[3] Awata H., Yamada Y., “Five-dimensional AGT conjecture and the deformed Virasoro algebra”, J. High Energy Phys., 2010:1 (2010), 125, 11 pp., arXiv: 0910.4431 | DOI | MR | Zbl
[4] Bershtein M. A., Gavrylenko P. G., Marshakov A. V., “Cluster Toda lattices and Nekrasov functions”, Theoret. and Math. Phys., 198 (2019), 157–188, arXiv: 1804.10145 | DOI | MR | Zbl
[5] Bershtein M. A., Shchechkin A. I., “$q$-deformed Painlevé $\tau$ function and $q$-deformed conformal blocks”, J. Phys. A: Math. Theor., 50 (2017), 085202, 22 pp., arXiv: 1608.02566 | DOI | MR | Zbl
[6] Bershtein M. A., Shchechkin A. I., Painlevé equations from Nakajima–Yoshioka blow-up relations, Lett. Math. Phys. (to appear) , arXiv: 1811.04050 | DOI | MR
[7] Bonelli G., Grassi A., Tanzini A., “Quantum curves and $q$-deformed Painlevé equations”, Lett. Math. Phys., 109 (2019), 1961–2001, arXiv: 1710.11603 | DOI | MR | Zbl
[8] Bonelli G., Lisovyy O., Maruyoshi K., Sciarappa A., Tanzini A., “On Painlevé/gauge theory correspondence”, Lett. Math. Phys., 107 (2017), 2359–2413, arXiv: 1612.06235 | DOI | MR | Zbl
[9] Felder G., Müller-Lennert M., “Analyticity of Nekrasov partition functions”, Comm. Math. Phys., 364 (2018), 683–718, arXiv: 1709.05232 | DOI | MR | Zbl
[10] Gamayun O., Iorgov N., Lisovyy O., “Conformal field theory of Painlevé VI”, J. High Energy Phys., 2012:10 (2012), 038, 25 pp., arXiv: 1207.0787 | DOI | MR
[11] Gamayun O., Iorgov N., Lisovyy O., “How instanton combinatorics solves Painlevé VI, V and IIIs”, J. Phys. A: Math. Theor., 46 (2013), 335203, 29 pp., arXiv: 1302.1832 | DOI | MR | Zbl
[12] Gambier B., “Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est a points critiques fixes”, Acta Math., 33 (1910), 1–55 | DOI | MR
[13] Grammaticos B., Ramani A., “Parameterless discrete Painlevé equations and their Miura relations”, J. Nonlinear Math. Phys., 23 (2016), 141–149 | DOI | MR | Zbl
[14] Iorgov N., Lisovyy O., Teschner J., “Isomonodromic tau-functions from Liouville conformal blocks”, Comm. Math. Phys., 336 (2015), 671–694, arXiv: 1401.6104 | DOI | MR | Zbl
[15] Jimbo M., Nagoya H., Sakai H., “CFT approach to the $q$-Painlevé VI equation”, J. Integrable Syst., 2 (2017), xyx009, 27 pp., arXiv: 1706.01940 | DOI | MR | Zbl
[16] Jimbo M., Sakai H., “A $q$-analog of the sixth Painlevé equation”, Lett. Math. Phys., 38 (1996), 145–154 | DOI | MR | Zbl
[17] Kajiwara K., Noumi M., Yamada Y., “Geometric aspects of Painlevé equations”, J. Phys. A: Math. Theor., 50 (2017), 073001, 164 pp., arXiv: 1509.08186 | DOI | MR | Zbl
[18] Mano T., “Asymptotic behaviour around a boundary point of the $q$-Painlevé VI equation and its connection problem”, Nonlinearity, 23 (2010), 1585–1608 | DOI | MR | Zbl
[19] Murata M., “Lax forms of the $q$-Painlevé equations”, J. Phys. A: Math. Theor., 42 (2009), 115201, 17 pp., arXiv: 0810.0058 | DOI | MR | Zbl
[20] Nagoya H., “Irregular conformal blocks, with an application to the fifth and fourth Painlevé equations”, J. Math. Phys., 56 (2015), 123505, 24 pp., arXiv: 1505.02398 | DOI | MR | Zbl
[21] Nagoya H., “Remarks on irregular conformal blocks and Painlevé III and II tau functions”, Proceedings of the Meeting for Study of Number Theory, Hopf Algebras and Related Topics, Yokohama Publ., Yokohama, 2019, 105–124, arXiv: 1804.04782 | MR
[22] Painlevé P., “Mémoire sur les équations différentielles dont l'intégrale générale est uniforme”, Bull. Soc. Math. France, 28 (1900), 201–261 | DOI | MR | Zbl
[23] Painlevé P., “Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme”, Acta Math., 25 (1902), 1–85 | DOI | MR
[24] Ramani A., Grammaticos B., Hietarinta J., “Discrete versions of the Painlevé equations”, Phys. Rev. Lett., 67 (1991), 1829–1832 | DOI | MR | Zbl
[25] Sakai H., “Rational surfaces associated with affine root systems and geometry of the Painlevé equations”, Comm. Math. Phys., 220 (2001), 165–229 | DOI | MR | Zbl
[26] Sakai H., “Problem: discrete {P}ainlevé equations and their Lax forms”, Algebraic, Analytic and Geometric Aspects of Complex Differential Equations and their Deformations. Painlevé Hierarchies, RIMS Kôkyûroku Bessatsu, B2, Res. Inst. Math. Sci. (RIMS), Kyoto, 2007, 195–208 | MR
[27] Tachikawa Y., “Five-dimensional Chern–Simons terms and Nekrasov's instanton counting”, J. High Energy Phys., 2004:2 (2004), 050, 13 pp., arXiv: hep-th/0401184 | DOI | MR
[28] Yanagida S., Norm of the Whittaker vector of the deformed Virasoro algebra, arXiv: 1411.0462