@article{SIGMA_2019_15_a72,
author = {Marco Maceda and Daniel Mart{\'\i}nez-Carbajal},
title = {A {K\"ahler} {Compatible} {Moyal} {Deformation} of the {First} {Heavenly} {Equation}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a72/}
}
TY - JOUR AU - Marco Maceda AU - Daniel Martínez-Carbajal TI - A Kähler Compatible Moyal Deformation of the First Heavenly Equation JO - Symmetry, integrability and geometry: methods and applications PY - 2019 VL - 15 UR - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a72/ LA - en ID - SIGMA_2019_15_a72 ER -
Marco Maceda; Daniel Martínez-Carbajal. A Kähler Compatible Moyal Deformation of the First Heavenly Equation. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a72/
[1] Alexandrov S., Pioline B., Vandoren S., “Self-dual Einstein spaces, heavenly metrics, and twistors”, J. Math. Phys., 51 (2010), 073510, 31 pp., arXiv: 0912.3406 | DOI | MR | Zbl
[2] Alvarez-Gaumé L., Freedman D. Z., “Geometrical structure and ultraviolet finiteness in the supersymmetric $\sigma $-model”, Comm. Math. Phys., 80 (1981), 443–451 | DOI | MR
[3] Atiyah M. F., Hitchin N. J., “Low energy scattering of nonabelian monopoles”, Phys. Lett. A, 107 (1985), 21–25 | DOI | MR | Zbl
[4] Atiyah M. F., Hitchin N. J., The geometry and dynamics of magnetic monopoles, M.B. Porter Lectures, Princeton University Press, Princeton, NJ, 1988 | DOI | MR | Zbl
[5] Atiyah M. F., Hitchin N. J., Singer I. M., “Self-duality in four-dimensional Riemannian geometry”, Proc. Roy. Soc. London Ser. A, 362 (1978), 425–461 | DOI | MR | Zbl
[6] Bakas I., “Remarks on the Atiyah–Hitchin metric”, Fortschr. Phys., 48 (2000), 9–14, arXiv: hep-th/9903256 | 3.0.CO;2-7 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[7] Bakas I., Sfetsos K., “Toda fields of ${\rm SO}(3)$ hyper-Kähler metrics and free field realizations”, Internat. J. Modern Phys. A, 12 (1997), 2585–2611, arXiv: hep-th/9604003 | DOI | MR | Zbl
[8] Boyer C. P., “The geometry of complex self-dual Einstein spaces”, Nonlinear Phenomena (Oaxtepec, 1982), Lecture Notes in Phys., 189, Springer, Berlin, 1983, 25–46 | DOI | MR
[9] Boyer C. P., Finley III J. D., “Killing vectors in self-dual, Euclidean Einstein spaces”, J. Math. Phys., 23 (1982), 1126–1130 | DOI | MR | Zbl
[10] Boyer C. P., Plebański J. F., “An infinite hierarchy of conservation laws and nonlinear superposition principles for self-dual Einstein spaces”, J. Math. Phys., 26 (1985), 229–234 | DOI | MR | Zbl
[11] Douglas M. R., Nekrasov N. A., “Noncommutative field theory”, Rev. Modern Phys., 73 (2001), 977–1029, arXiv: hep-th/0106048 | DOI | MR | Zbl
[12] Eguchi T., Gilkey P. B., Hanson A. J., “Gravitation, gauge theories and differential geometry”, Phys. Rep., 66 (1980), 213–393 | DOI | MR
[13] Esposito G., “From spinor geometry to complex general relativity”, Int. J. Geom. Methods Mod. Phys., 2 (2005), 675–731, arXiv: hep-th/0504089 | DOI | MR | Zbl
[14] Finley III J. D., Plebański J. F., “Further heavenly metrics and their symmetries”, J. Math. Phys., 17 (1976), 585–596 | DOI | MR
[15] García D.A., Plebański J. F., “Seven parametric type-$D$ solutions of Einstein–Maxwell equations in the basic left-degenerate representation”, Nuovo Cimento A, 40 (1977), 224–234 | DOI | MR
[16] Gegenberg J. D., Das A., “Stationary Riemannian space-times with self-dual curvature”, Gen. Relativity Gravitation, 16 (1984), 817–829 | DOI | MR | Zbl
[17] Gibbons G. W., Hawking S. W., “Classification of gravitational instanton symmetries”, Comm. Math. Phys., 66 (1979), 291–310 | DOI | MR
[18] Gibbons G. W., Manton N. S., “Classical and quantum dynamics of BPS monopoles”, Nuclear Phys. B, 274 (1986), 183–224 | DOI | MR
[19] Gibbons G. W., Olivier D., Ruback P. J., Valent G., “Multicentre metrics and harmonic superspace”, Nuclear Phys. B, 296 (1988), 679–696 | DOI | MR
[20] Gibbons G. W., Ruback P. J., “The hidden symmetries of multi-centre metrics”, Comm. Math. Phys., 115 (1988), 267–300 | DOI | MR | Zbl
[21] Hanany A., Pioline B., “(Anti-)instantons and the Atiyah–Hitchin manifold”, J. High Energy Phys., 2000:7 (2000), 001, 23 pp., arXiv: hep-th/0005160 | DOI | MR | Zbl
[22] Hitchin N. J., Karlhede A., Lindström U., Roček M., “Hyperkähler metrics and supersymmetry”, Comm. Math. Phys., 108 (1987), 535–589 | DOI | MR | Zbl
[23] Husain V., “Self-dual gravity as a two-dimensional theory and conservation laws”, Classical Quantum Gravity, 11 (1994), 927–937, arXiv: gr-qc/9310003 | DOI | MR
[24] Ionas R. A., Elliptic constructions of hyperkähler metrics I: The Atiyah–Hitchin manifold, arXiv: 0712.3598
[25] Ko M., Ludvigsen M., Newman E. T., Tod K. P., “The theory of ${\mathcal H}$-space”, Phys. Rep., 71 (1981), 51–139 | DOI | MR
[26] Moyal J. E., “Quantum mechanics as a statistical theory”, Proc. Cambridge Philos. Soc., 45 (1949), 99–124 | DOI | MR | Zbl
[27] Newman E. T., Porter J. R., Tod K. P., “Twistor surfaces and right-flat spaces”, Gen. Relativity Gravitation, 9 (1978), 1129–1142 | DOI | MR | Zbl
[28] Olivier D., “Complex coordinates and Kähler potential for the Atiyah–Hitchin metric”, Gen. Relativity Gravitation, 23 (1991), 1349–1362 | DOI | MR | Zbl
[29] Park Q. H., “Self-dual gravity as a large-$N$ limit of the 2D non-linear sigma model”, Phys. Lett. B, 238 (1990), 287–290 | DOI | MR | Zbl
[30] Park Q. H., “2D sigma model approach to 4D instantons”, Internat. J. Modern Phys. A, 7 (1992), 1415–1447 | DOI | MR
[31] Penrose R., “Nonlinear gravitons and curved twistor theory”, Gen. Relativity Gravitation, 7 (1976), 31–52 | DOI | MR | Zbl
[32] Penrose R., “The nonlinear graviton”, Gen. Relativity Gravitation, 7 (1976), 171–176 | DOI | MR
[33] Penrose R., Ward R. S., “Twistors for flat and curved space-time”, General Relativity and Gravitation, v. 2, Plenum, New York–London, 1980, 283–328 | MR
[34] Plebański J. F., “Some solutions of complex Einstein equations”, J. Math. Phys., 16 (1975), 2395–2402 | DOI | MR
[35] Plebański J. F., Przanowski M., Rajca B., Tosiek J., “The Moyal deformation of the second heavenly equation”, Acta Phys. Polon. B, 26 (1995), 889–902 | MR | Zbl
[36] Plebański J. F., Robinson I., “Left-degenerate vacuum metrics”, Phys. Rev. Lett., 37 (1976), 493–495 | DOI | MR
[37] Plebański J. F., Torres del Castillo G. F., “${\mathcal{HH}}$ spaces with an algebraically degenerate right side”, J. Math. Phys., 23 (1982), 1349–1352 | DOI | MR | Zbl
[38] Strachan I. A. B., “The Moyal algebra and integrable deformations of the self-dual Einstein equations”, Phys. Lett. B, 283 (1992), 63–66 | DOI | MR
[39] Strachan I. A. B., “Hierarchy of conservation laws for self-dual gravity”, Classical Quantum Gravity, 10 (1993), 1417–1423 | DOI | MR
[40] Strachan I. A. B., “The symmetry structure of the anti-self-dual Einstein hierarchy”, J. Math. Phys., 36 (1995), 3566–3573, arXiv: hep-th/9410047 | DOI | MR | Zbl
[41] Strachan I. A. B., “A geometry for multidimensional integrable systems”, J. Geom. Phys., 21 (1997), 255–278, arXiv: hep-th/9604142 | DOI | MR | Zbl
[42] Szabo R. J., “Quantum field theory on noncommutative spaces”, Phys. Rep., 378 (2003), 207–299, arXiv: hep-th/0109162 | DOI | MR | Zbl
[43] Takasaki K., “Dressing operator approach to Moyal algebraic deformation of selfdual gravity”, J. Geom. Phys., 14 (1994), 111–120, arXiv: hep-th/9212103 | DOI | MR | Zbl