Spinorially Twisted Spin Structures. II: Twisted Pure Spinors, Special Riemannian Holonomy and Clifford Monopoles
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce a notion of twisted pure spinor in order to characterize, in a unified way, all the special Riemannian holonomy groups just as a classical pure spinor characterizes the special Kähler holonomy. Motivated by certain curvature identities satisfied by manifolds admitting parallel twisted pure spinors, we also introduce the Clifford monopole equations as a natural geometric generalization of the Seiberg–Witten equations. We show that they restrict to the Seiberg–Witten equations in 4 dimensions, and that they admit non-trivial solutions on manifolds with special Riemannian holonomy.
Keywords: twisted spinor, pure spinor, parallel spinor, special Riemannian holonomy, Clifford monopole.
@article{SIGMA_2019_15_a71,
     author = {Rafael Herrera and Noemi Santana},
     title = {Spinorially {Twisted} {Spin} {Structures.~II:} {Twisted} {Pure} {Spinors,} {Special} {Riemannian} {Holonomy} and {Clifford} {Monopoles}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a71/}
}
TY  - JOUR
AU  - Rafael Herrera
AU  - Noemi Santana
TI  - Spinorially Twisted Spin Structures. II: Twisted Pure Spinors, Special Riemannian Holonomy and Clifford Monopoles
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a71/
LA  - en
ID  - SIGMA_2019_15_a71
ER  - 
%0 Journal Article
%A Rafael Herrera
%A Noemi Santana
%T Spinorially Twisted Spin Structures. II: Twisted Pure Spinors, Special Riemannian Holonomy and Clifford Monopoles
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a71/
%G en
%F SIGMA_2019_15_a71
Rafael Herrera; Noemi Santana. Spinorially Twisted Spin Structures. II: Twisted Pure Spinors, Special Riemannian Holonomy and Clifford Monopoles. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a71/

[1] Arizmendi G., Garcia-Pulido A. L., Herrera R., “A note on the geometry and topology of almost even-Clifford Hermitian manifolds”, Q. J. Math., 69 (2018), 321–376, arXiv: 1606.00774 | DOI | MR | Zbl

[2] Arizmendi G., Herrera R., “Centralizers of spin subalgebras”, J. Geom. Phys., 97 (2015), 77–92, arXiv: 1503.06168 | DOI | MR | Zbl

[3] Arizmendi G., Herrera R., Santana N., “Almost even-Clifford hermitian manifolds with a large automorphism group”, Proc. Amer. Math. Soc., 144 (2016), 4009–4020, arXiv: 1506.03713 | DOI | MR | Zbl

[4] Barberis M. L., Dotti Miatello I. G., Miatello R. J., “On certain locally homogeneous Clifford manifolds”, Ann. Global Anal. Geom., 13 (1995), 289–301 | DOI | MR | Zbl

[5] Berger M., “Sur les groupes d'holonomie homogène des variétés à connexion affine et des variétés riemanniennes”, Bull. Soc. Math. France, 83 (1955), 279–330 | DOI | MR | Zbl

[6] Burdujan I., “On almost Cliffordian manifolds”, Ital. J. Pure Appl. Math., 2003, 129–144 | MR | Zbl

[7] Burdujan I., “Clifford–Kähler manifolds”, Balkan J. Geom. Appl., 13 (2008), 12–23 | MR | Zbl

[8] Cartan E., The theory of spinors, Dover Publications, Inc., New York, 1981 | MR | Zbl

[9] Console S., Olmos C., “Clifford systems, algebraically constant second fundamental form and isoparametric hypersurfaces”, Manuscripta Math., 97 (1998), 335–342 | DOI | MR | Zbl

[10] Espinosa M., Herrera R., “Spinorially twisted spin structures, I: Curvature identities and eigenvalue estimates”, Differential Geom. Appl., 46 (2016), 79–107, arXiv: 1409.6246 | DOI | MR | Zbl

[11] Ferus D., Karcher H., Münzner H. F., “Cliffordalgebren und neue isoparametrische Hyperflächen”, Math. Z., 177 (1981), 479–502 | DOI | MR | Zbl

[12] Friedrich T., Dirac operators in Riemannian geometry, Graduate Studies in Mathematics, 25, Amer. Math. Soc., Providence, RI, 2000 | DOI | MR | Zbl

[13] Friedrich T., “Weak Spin(9)-structures on 16-dimensional Riemannian manifolds”, Asian J. Math., 5 (2001), 129–160, arXiv: math.DG/9912112 | DOI | MR | Zbl

[14] Garcia-Pulido A. L., Herrera R., “Rigidity and vanishing theorems for almost even-Clifford Hermitian manifolds”, SIGMA, 13 (2017), 027, 28 pp., arXiv: 1609.01509 | DOI | MR | Zbl

[15] Hadfield C., Moroianu A., “Local geometry of even {C}lifford structures on conformal manifolds”, Ann. Global Anal. Geom., 54 (2018), 301–313, arXiv: 1611.01665 | DOI | MR | Zbl

[16] Hitchin N., “Harmonic spinors”, Adv. Math., 14 (1974), 1–55 | DOI | MR | Zbl

[17] Joyce D. D., “Manifolds with many complex structures”, Quart. J. Math. Oxford Ser. (2), 46 (1995), 169–184 | DOI | MR | Zbl

[18] Joyce D. D., Riemannian holonomy groups and calibrated geometry, Oxford Graduate Texts in Mathematics, 12, Oxford University Press, Oxford, 2007 | DOI | MR | Zbl

[19] Kirchberg K.-D., “An estimation for the first eigenvalue of the Dirac operator on closed Kähler manifolds of positive scalar curvature”, Ann. Global Anal. Geom., 4 (1986), 291–325 | DOI | MR | Zbl

[20] Lawson Jr. H.B., Michelsohn M.-L., Spin geometry, Princeton Mathematical Series, 38, Princeton University Press, Princeton, NJ, 1989 | MR | Zbl

[21] Lazaroiu C. I., Shahbazi C. S., Real pinor bundles and real Lipschitz structures, arXiv: 1606.07894

[22] Lazaroiu C. I., Shahbazi C. S., “Complex Lipschitz structures and bundles of complex Clifford modules”, Differential Geom. Appl., 61 (2018), 147–169, arXiv: 1711.07765 | DOI | MR | Zbl

[23] Leung N. C., “Riemannian geometry over different normed division algebras”, J. Differential Geom., 61 (2002), 289–333, arXiv: math.DG/0303153 | DOI | MR | Zbl

[24] Morgan J. W., The Seiberg–Witten equations and applications to the topology of smooth four-manifolds, Mathematical Notes, 44, Princeton University Press, Princeton, NJ, 1996 | MR | Zbl

[25] Moroianu A., “Parallel and Killing spinors on ${\rm Spin}^c$ manifolds”, Comm. Math. Phys., 187 (1997), 417–427 | DOI | MR | Zbl

[26] Moroianu A., Pilca M., “Higher rank homogeneous Clifford structures”, J. Lond. Math. Soc., 87 (2013), 384–400, arXiv: 1110.4260 | DOI | MR | Zbl

[27] Moroianu A., Semmelmann U., “Clifford structure on Riemannian manifolds”, Adv. Math., 228 (2011), 940–967, arXiv: 0912.4207 | DOI | MR | Zbl

[28] Nagase M., “${\rm Spin}^q$ structures”, J. Math. Soc. Japan, 47 (1195), 93–119 | DOI | MR

[29] Nicolaescu L. I., Notes on Seiberg–Witten theory, Graduate Studies in Mathematics, 28, Amer. Math. Soc., Providence, RI, 2000 | DOI | MR | Zbl

[30] Nikolayevsky Y., “Osserman manifolds and Clifford structures”, Houston J. Math., 29 (2003), 59–75 | MR | Zbl

[31] Parton M., Piccinni P., “$\rm Spin(9)$ and almost complex structures on 16-dimensional manifolds”, Ann. Global Anal. Geom., 41 (2012), 321–345, arXiv: 1105.5318 | DOI | MR | Zbl

[32] Parton M., Piccinni P., “The even Clifford structure of the fourth Severi variety”, Complex Manifolds, 2 (2015), 89–104, arXiv: 1506.04624 | DOI | MR | Zbl

[33] Parton M., Piccinni P., Vuletescu V., “Clifford systems in octonionic geometry”, Rend. Semin. Mat. Univ. Politec. Torino, 74 (2016), 269–290, arXiv: 1511.06239 | MR

[34] Piccinni P., “On some Grassmannians carrying an even Clifford structure”, Differential Geom. Appl., 59 (2018), 122–137, arXiv: 1805.01751 | DOI | MR | Zbl

[35] Salamon S., Riemannian geometry and holonomy groups, Pitman Research Notes in Mathematics Series, 201, Longman Scientific Technical, Harlow, 1989 | MR | Zbl

[36] Santana N., Automorfismos de variedades casi-cuaterniónicas hermitianas y holonomía de variedades con spinors puros paralelos, Ph.D. Thesis, CIMAT, Guanajuato, 2011

[37] Simons J., “On the transitivity of holonomy systems”, Ann. of Math., 76 (1962), 213–234 | DOI | MR | Zbl

[38] Spindel P., Sevrin A., Troost W., Van Proeyen A., “Extended supersymmetric $\sigma$-models on group manifolds. I The complex structures”, Nuclear Phys. B, 308 (1988), 662–698 | DOI | MR

[39] Wang M. Y., “Parallel spinors and parallel forms”, Ann. Global Anal. Geom., 7 (1989), 59–68 | DOI | MR | Zbl

[40] Witten E., “Monopoles and four-manifolds”, Math. Res. Lett., 1 (1994), 769–796, arXiv: hep-th/9411102 | DOI | MR | Zbl