@article{SIGMA_2019_15_a70,
author = {Marius van der Put},
title = {Stratified {Bundles} on {Curves} and {Differential} {Galois} {Groups} in {Positive} {Characteristic}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a70/}
}
TY - JOUR AU - Marius van der Put TI - Stratified Bundles on Curves and Differential Galois Groups in Positive Characteristic JO - Symmetry, integrability and geometry: methods and applications PY - 2019 VL - 15 UR - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a70/ LA - en ID - SIGMA_2019_15_a70 ER -
Marius van der Put. Stratified Bundles on Curves and Differential Galois Groups in Positive Characteristic. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a70/
[1] Battiston G., The base change of the monodromy group for geometric Tannakian pairs, arXiv: 1601.06519
[2] Borel A., Serre J.-P., “Théorèmes de finitude en cohomologie galoisienne”, Comment. Math. Helv., 39 (1964), 111–164 | DOI | MR | Zbl
[3] dos Santos J. P. P., “Fundamental group schemes for stratified sheaves”, J. Algebra, 317 (2007), 691–713 | DOI | MR | Zbl
[4] Ernst S., “Iterative differential embedding problems in positive characteristic”, J. Algebra, 402 (2014), 544–564, arXiv: 1107.1962 | DOI | MR | Zbl
[5] Esnault H., “On flat bundles in characteristic 0 and $p>0$”, European Congress of Mathematics, Eur. Math. Soc., Zürich, 2013, 301–313, arXiv: 1205.4884 | MR | Zbl
[6] Esnault H., Mehta V., “Simply connected projective manifolds in characteristic $p>0$ have no nontrivial stratified bundles”, Invent. Math., 181 (2010), 449–465, arXiv: 0907.3375 | DOI | MR | Zbl
[7] Gerritzen L., van der Put M., Schottky groups and Mumford curves, Lecture Notes in Math., 817, Springer, Berlin, 1980 | DOI | MR | Zbl
[8] Gieseker D., “Flat vector bundles and the fundamental group in non-zero characteristics”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2 (1975), 1–31 | MR | Zbl
[9] Grothendieck A., “Éléments de géométrie algébrique. IV Étude locale des schémas et des morphismes de schémas IV”, Inst. Hautes Études Sci. Publ. Math., 32 (1967), 5–361 | DOI | MR
[10] Grothendieck A., Raynaud M., Revêtements étales et groupe fondamental, Lecture Notes in Math., 224, Springer-Verlag, Berlin–New York, 1971, arXiv: math.AG/0206203 | DOI | MR | Zbl
[11] Katz N. M., “On the calculation of some differential Galois groups”, Invent. Math., 87 (1987), 13–61 | DOI | MR | Zbl
[12] Kindler L., Regular singular stratified bundles in positive characteristic, Ph.D. Thesis, Universität Duisburg-Essen, 2012
[13] Kindler L., “Regular singular stratified bundles and tame ramification”, Trans. Amer. Math. Soc., 367 (2015), 6461–6485, arXiv: 1210.5077 | DOI | MR | Zbl
[14] Matzat B. H., Differential Galois theory in positive characteristic, Preprint 2001-35, IWR, 2001 | MR
[15] Matzat B. H., van der Put M., “Constructive differential Galois theory”, Galois Groups and Fundamental Groups, Math. Sci. Res. Inst. Publ., 41, Cambridge University Press, Cambridge, 2003, 425–467 | MR | Zbl
[16] Matzat B. H., van der Put M., “Iterative differential equations and the Abhyankar conjecture”, J. Reine Angew. Math., 557 (2003), 1–52 | DOI | MR | Zbl
[17] Röscheisen A., Iterative connections and Abhyankar's conjecture, Ph.D. Thesis, Heidelberg University, 2007 | DOI | Zbl
[18] Shiomi D., “On the Deuring–Shafarevich formula”, Tokyo J. Math., 34 (2011), 313–318 | DOI | MR | Zbl
[19] Springer T. A., Linear algebraic groups, Progress in Mathematics, 9, 2nd ed., Birkhäuser Boston, Inc., Boston, MA, 1998 | DOI | MR | Zbl
[20] Voskuil H. H., van der Put M., “Mumford curves and Mumford groups in positive characteristic”, J. Algebra, 517 (2019), 119–166, arXiv: 1707.03644 | DOI | MR | Zbl