Homogeneous Real $(2,3,5)$ Distributions with Isotropy
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We classify multiply transitive homogeneous real $(2,3,5)$ distributions up to local diffeomorphism equivalence.
Keywords: $(2,3,5)$ distributions; generic distributions; homogeneous spaces; rolling distributions.
@article{SIGMA_2019_15_a7,
     author = {Travis Willse},
     title = {Homogeneous {Real} $(2,3,5)$ {Distributions} with {Isotropy}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a7/}
}
TY  - JOUR
AU  - Travis Willse
TI  - Homogeneous Real $(2,3,5)$ Distributions with Isotropy
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a7/
LA  - en
ID  - SIGMA_2019_15_a7
ER  - 
%0 Journal Article
%A Travis Willse
%T Homogeneous Real $(2,3,5)$ Distributions with Isotropy
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a7/
%G en
%F SIGMA_2019_15_a7
Travis Willse. Homogeneous Real $(2,3,5)$ Distributions with Isotropy. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a7/

[1] Agrachev A. A., “Rolling balls and octonions”, Proc. Steklov Inst. Math., 258 (2007), 13–22, arXiv: math.OC/0611812 | DOI | MR | Zbl

[2] An D., Nurowski P., “Twistor space for rolling bodies”, Comm. Math. Phys., 326 (2014), 393–414, arXiv: 1210.3536 | DOI | MR | Zbl

[3] An D., Nurowski P., “Symmetric $(2,3,5)$ distributions, an interesting ODE of 7th order and Plebański metric”, J. Geom. Phys., 126 (2018), 93–100, arXiv: 1302.1910 | DOI | MR | Zbl

[4] Baez J. C., Huerta J., “${\rm G}_2$ and the rolling ball”, Trans. Amer. Math. Soc., 366 (2014), 5257–5293, arXiv: 1205.2447 | DOI | MR | Zbl

[5] Bor G., Montgomery R., “${\rm G}_2$ and the rolling distribution”, Enseign. Math., 55 (2009), 157–196, arXiv: math.DG/0612469 | DOI | MR | Zbl

[6] Bryant R. L., Hsu L., “Rigidity of integral curves of rank $2$ distributions”, Invent. Math., 114 (1993), 435–461 | DOI | MR | Zbl

[7] Čap A., Sagerschnig K., “On Nurowski's conformal structure associated to a generic rank two distribution in dimension five”, J. Geom. Phys., 59 (2009), 901–912, arXiv: 0710.2208 | DOI | MR | Zbl

[8] Čap A., Slovák J., Parabolic geometries. I Background and general theory, Mathematical Surveys and Monographs, 154, Amer. Math. Soc., Providence, RI, 2009 | DOI | MR | Zbl

[9] Cartan E., “Les systèmes de {P}faff, à cinq variables et les équations aux dérivées partielles du second ordre”, Ann. Sci. École Norm. Sup. (3), 27 (1910), 109–192 | DOI | MR | Zbl

[10] Cartan E., “Sur l'équivalence absolue de certains systèmes d'équations différentielles et sur certaines familles de courbes”, Bull. Soc. Math. France, 42 (1914), 12–48 | DOI | MR

[11] Dave S., Haller S., “On 5-manifolds admitting rank two distributions of Cartan type”, Trans. Amer. Math. Soc., 371 (2019), 4911–4929, arXiv: 1603.09700 | DOI

[12] Doubrov B., Govorov A., A new example of a generic 2-distribution on a 5-manifold with large symmetry algebra, arXiv: 1305.7297

[13] Doubrov B., Govorov A., Unpublished notes

[14] Doubrov B., Holland J., Sparling G., Spacetime and ${\rm G}_2$, arXiv: 0901.0543

[15] Doubrov B., Kruglikov B., “On the models of submaximal symmetric rank 2 distributions in 5D”, Differential Geom. Appl., 35 (2014), 314–322, arXiv: 1311.7057 | DOI | MR | Zbl

[16] Doubrov B., Medvedev A., The D., Homogeneous Levi non-degenerate hypersurfaces in ${\mathbb C}^3$, arXiv: 1711.02389

[17] Doubrov B., Zelenko I., “Geometry of rank 2 distributions with nonzero Wilczynski invariants”, J. Nonlinear Math. Phys., 21 (2014), 166–187, arXiv: 1301.2797 | DOI | MR

[18] Goursat E., Leçons sur le problème de Pfaff, Librairie Scientifique, J. Hermann, Paris, 1922 | Zbl

[19] Gover A. R., Panai R., Willse T., “Nearly Kähler geometry and $(2,3,5)$-distributions via projective holonomy”, Indiana Univ. Math. J., 66 (2017), 1351–1416, arXiv: 1403.1959 | DOI | MR | Zbl

[20] Graham C. R., Willse T., “Parallel tractor extension and ambient metrics of holonomy split $G_2$”, J. Differential Geom., 92 (2012), 463–505, arXiv: 1109.3504 | DOI | MR

[21] Hammerl M., Sagerschnig K., “Conformal structures associated to generic rank 2 distributions on 5-manifolds — characterization and Killing-field decomposition”, SIGMA, 5 (2009), 081, 29 pp., arXiv: 0908.0483 | DOI | MR | Zbl

[22] Hammerl M., Sagerschnig K., “The twistor spinors of generic 2- and 3-distributions”, Ann. Global Anal. Geom., 39 (2011), 403–425, arXiv: 1004.3632 | DOI | MR | Zbl

[23] Hilbert D., “Über den begriff der klasse von differentialgleichungen”, Math. Ann., 73 (1912), 95–108 | DOI | MR | Zbl

[24] Ishikawa G., Kitagawa Y., Tsuchida A., Yukuno W., Duality of (2,3,5)-distributions and Lagrangian cone structures, arXiv: 1808.00149

[25] Ishikawa G., Kitagawa Y., Yukuno W., “Duality of singular paths for (2,3,5)-distributions”, J. Dyn. Control Syst., 21 (2015), 155–171, arXiv: 1308.2501 | DOI | MR | Zbl

[26] Kruglikov B., The D., “The gap phenomenon in parabolic geometries”, J. Reine Angew. Math., 723 (2017), 153–215, arXiv: 1303.1307 | DOI | MR | Zbl

[27] Leistner T., Nurowski P., “Ambient metrics with exceptional holonomy”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 11 (2012), 407–436, arXiv: 0904.0186 | MR | Zbl

[28] Leistner T., Nurowski P., Sagerschnig K., “New relations between ${\rm G}_2$ geometries in dimensions 5 and 7”, Internat. J. Math., 28 (2017), 1750094, 46 pp., arXiv: 1601.03979 | DOI | MR | Zbl

[29] Nurowski P., “Differential equations and conformal structures”, J. Geom. Phys., 55 (2005), 19–49, arXiv: math.DG/0406400 | DOI | MR | Zbl

[30] Randall M., “Flat (2,3,5)-distributions and Chazy's equations”, SIGMA, 12 (2016), 029, 28 pp., arXiv: 1506.02473 | DOI | MR | Zbl

[31] Sagerschnig K., “Split octonions and generic rank two distributions in dimension five”, Arch. Math. (Brno), 42 (2006), 329–339 | MR | Zbl

[32] Sagerschnig K., Weyl structures for generic rank two distributions in dimension five, Ph.D. Thesis, Universität Wien, 2008 | MR

[33] Sagerschnig K., Willse T., “The almost Einstein operator for (2,3,5) distributions”, Arch. Math. (Brno), 53 (2017), 347–370, arXiv: 1705.00996 | DOI | MR | Zbl

[34] Sagerschnig K., Willse T., “The geometry of almost Einstein (2,3,5) distributions”, SIGMA, 13 (2017), 004, 56 pp., arXiv: 1606.01069 | DOI | MR | Zbl

[35] Strazzullo F., Symmetry analysis of general rank-3 Pfaffian systems in five variables, Ph.D. Thesis, Utah State University, 2009 http://digitalcommons.usu.edu/etd/449/

[36] Willse T., “Highly symmetric 2-plane fields on 5-manifolds and 5-dimensional Heisenberg group holonomy”, Differential Geom. Appl., 33 (2014), 81–111, arXiv: 1302.7163 | DOI | MR | Zbl

[37] Willse T., “Cartan's incomplete classification and an explicit ambient metric of holonomy ${\rm G}_2^*$”, Eur. J. Math., 4 (2018), 622–638, arXiv: 1411.7172 | DOI | MR | Zbl