Holomorphic Distributions and Connectivity by Integral Curves of Distributions
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is known that the classical Frobenius theorem on conditions of integrability for distributions of planes can be extended to the case of complex holomorphic distributions. We show that an alternative criterion for integrability, namely, non-connectivity, discovered (or at least, marked and explicitly formulated) by Carathéodory in relation to classical thermodynamics, also admits a holomorphic formulation.
Keywords: holomorphic distribution, integral curve, connectivity, thermodynamic states, Carathéodory's theorem.
Mots-clés : adiabatic transitions
@article{SIGMA_2019_15_a69,
     author = {Vladimir A. Zorich},
     title = {Holomorphic {Distributions} and {Connectivity} by {Integral} {Curves} of {Distributions}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a69/}
}
TY  - JOUR
AU  - Vladimir A. Zorich
TI  - Holomorphic Distributions and Connectivity by Integral Curves of Distributions
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a69/
LA  - en
ID  - SIGMA_2019_15_a69
ER  - 
%0 Journal Article
%A Vladimir A. Zorich
%T Holomorphic Distributions and Connectivity by Integral Curves of Distributions
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a69/
%G en
%F SIGMA_2019_15_a69
Vladimir A. Zorich. Holomorphic Distributions and Connectivity by Integral Curves of Distributions. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a69/

[1] Alarcón A., Forstnerič F., “Darboux charts around holomorphic Legendrian curves and applications”, Int. Math. Res. Not., 2019 (2019), 893–922, arXiv: 1702.00704 | DOI | MR

[2] Alarcón A., Forstnerič F., López F. J., “Holomorphic Legendrian curves”, Compos. Math., 153 (2017), 1945–1986, arXiv: 1607.00634 | DOI | MR | Zbl

[3] Arnold V. I., Mathematical methods of classical mechanics, Graduate Texts in Mathematics, 60, 2nd ed., Springer-Verlag, New York, 1989 | DOI | MR

[4] Born M., “Kritische Betrachtungen zur traditionellen Darstellung der Thermodynamik”, Phys. Z., 22 (1921), 282–286

[5] Carathéodory C., “Untersuchungen über die Grundlagen der Thermodynamik”, Math. Ann., 67 (1909), 355–386 | DOI | MR

[6] Carathéodory C., “Untersuchungen über die Grundlagen der Thermodynamik”, Gesammelte Mathematische Schriften, v. 2, C.H. Beck, München, 1955, 131–166 | MR

[7] Cartan H., Calcul différentiel, Hermann, Paris, 1967 | MR

[8] Chow W.-L., “Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung”, Math. Ann., 117 (1939), 98–105 | DOI | MR

[9] Gromov M., “Carnot-Carathéodory spaces seen from within”, Sub-Riemannian Geometry, Progr. Math., 144, Birkhäuser, Basel, 1996, 79–323 | DOI | MR | Zbl

[10] Montgomery R., A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs, 91, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[11] Nirenberg L., “A complex Frobenius theorem”, Sem. Analytic Functions, 1 (1958), 172–189 | Zbl

[12] Poincaré H., Thermodynamique, Gautier-Villar, Paris, 1908 | MR | Zbl

[13] Rashevskiy P. K., “On the connectivity of any two points of a completely nonholonomic space with an admissible line”, Uch. Zap. Moskov. Gos. Ped. Univ. im. K. Libknekhta Ser. Fiz.-Mat., 3:2 (1958), 83–94

[14] Zorich V., Mathematical analysis of problems in the natural sciences, Springer, Heidelberg, 2011 | DOI | MR | Zbl

[15] Zorich V., Mathematical aspects of classical thermodynamics, MCCME, M., 2019