Vertex Models and Spin Chains in Formulas and Pictures
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We systematise and develop a graphical approach to the investigations of quantum integrable vertex statistical models and the corresponding quantum spin chains. The graphical forms of the unitarity and various crossing relations are introduced. Their explicit analytical forms for the case of integrable systems associated with the quantum loop algebra ${\mathrm U}_q(\mathcal L(\mathfrak{sl}_{l + 1}))$ are given. The commutativity conditions for the transfer operators of lattices with a boundary are derived by the graphical method. Our consideration reveals useful advantages of the graphical approach for certain problems in the theory of quantum integrable systems.
Keywords: quantum loop algebras, integrable vertex models, integrable spin models, graphical methods
Mots-clés : open chains.
@article{SIGMA_2019_15_a67,
     author = {Khazret S. Nirov and Alexander V. Razumov},
     title = {Vertex {Models} and {Spin} {Chains} in {Formulas} and {Pictures}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a67/}
}
TY  - JOUR
AU  - Khazret S. Nirov
AU  - Alexander V. Razumov
TI  - Vertex Models and Spin Chains in Formulas and Pictures
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a67/
LA  - en
ID  - SIGMA_2019_15_a67
ER  - 
%0 Journal Article
%A Khazret S. Nirov
%A Alexander V. Razumov
%T Vertex Models and Spin Chains in Formulas and Pictures
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a67/
%G en
%F SIGMA_2019_15_a67
Khazret S. Nirov; Alexander V. Razumov. Vertex Models and Spin Chains in Formulas and Pictures. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a67/

[1] Asherova R. M., Smirnov Yu. F., Tolstoy V. N., “Description of a class of projection operators for semisimple complex Lie algebras”, Math. Notes, 26 (1979), 499–504 | DOI | MR

[2] Aufgebauer B., Klümper A., “Finite temperature correlation functions from discrete functional equations”, J. Phys. A: Math. Theor., 45 (2012), 345203, 20 pp., arXiv: 1205.5702 | DOI | MR | Zbl

[3] Aval J.-C., “The symmetry of the partition function of some square ice models”, Theoret. and Math. Phys., 161 (2009), 1582–1589, arXiv: 0903.0777 | DOI | MR | Zbl

[4] Aval J.-C., Duchon P., “Enumeration of alternating sign matrices of even size (quasi)-invariant under a quarter-turn rotation”, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), Discrete Math. Theor. Comput. Sci. Proc., AK, Assoc. Discrete Math. Theor. Comput. Sci. (Nancy, 2009), 115–126, arXiv: 0910.3047 | MR | Zbl

[5] Baxter R. J., Exactly solved models in statistical mechanics, Academic Press, Inc., London, 1982 | MR | Zbl

[6] Baz E. E., Kastel B., Graphical methods of spin algebras in atomic, nuclear, and particle physics, Marcel Dekker, New York, 1972 | MR

[7] Bazhanov V. V., Phys. Lett. B, 159 (1985), Trigonometric solutions of triangle equations and classical Lie algebras | DOI | MR

[8] Bazhanov V. V., Hibberd A. N., Khoroshkin S. M., “Integrable structure of ${\mathcal W}_3$ conformal field theory, quantum Boussinesq theory and boundary affine Toda theory”, Nuclear Phys. B, 622 (2002), 475–547, arXiv: hep-th/0105177 | DOI | MR | Zbl

[9] Bazhanov V. V., Lukyanov S. L., Zamolodchikov A. B., “Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe ansatz”, Comm. Math. Phys., 177 (1996), 381–398, arXiv: hep-th/9412229 | DOI | MR | Zbl

[10] Bazhanov V. V., Lukyanov S. L., Zamolodchikov A. B., “Integrable structure of conformal field theory. II ${\rm Q}$-operator and DDV equation”, Comm. Math. Phys., 190 (1997), 247–278, arXiv: hep-th/9604044 | DOI | MR | Zbl

[11] Bazhanov V. V., Lukyanov S. L., Zamolodchikov A. B., “Integrable structure of conformal field theory. III The Yang–Baxter relation”, Comm. Math. Phys., 200 (1999), 297–324, arXiv: hep-th/9805008 | DOI | MR | Zbl

[12] Bazhanov V. V., Tsuboi Z., “Baxter's Q-operators for supersymmetric spin chains”, Nuclear Phys. B, 805 (2008), 451–516, arXiv: 0805.4274 | DOI | MR | Zbl

[13] Beck J., “Convex bases of PBW type for quantum affine algebras”, Comm. Math. Phys., 165 (1994), 193–199, arXiv: hep-th/9407003 | DOI | MR | Zbl

[14] Behrend R. E., Fischer I., Konvalinka M., “Diagonally and antidiagonally symmetric alternating sign matrices of odd order”, Adv. Math., 315 (2017), 324–365, arXiv: 1512.06030 | DOI | MR | Zbl

[15] Boos H., Göhmann F., Klümper A., Nirov Kh. S., Razumov A. V., “Exercises with the universal $R$-matrix”, J. Phys. A: Math. Theor., 43 (2010), 415208, 35 pp., arXiv: 1004.5342 | DOI | MR | Zbl

[16] Boos H., Göhmann F., Klümper A., Nirov Kh. S., Razumov A. V., “On the universal $R$-matrix for the Izergin–Korepin model”, J. Phys. A: Math. Theor., 44 (2011), 355202, 25 pp., arXiv: 1104.5696 | DOI | MR | Zbl

[17] Boos H., Göhmann F., Klümper A., Nirov Kh. S., Razumov A. V., “Universal integrability objects”, Theoret. and Math. Phys., 174 (2013), 21–39, arXiv: 1205.4399 | DOI | MR | Zbl

[18] Boos H., Göhmann F., Klümper A., Nirov Kh. S., Razumov A. V., “Quantum groups and functional relations for higher rank”, J. Phys. A: Math. Theor., 47 (2014), 275201, 47 pp., arXiv: 1312.2484 | DOI | MR | Zbl

[19] Boos H., Göhmann F., Klümper A., Nirov Kh. S., Razumov A. V., “Universal $R$-matrix and functional relations”, Rev. Math. Phys., 26 (2014), 1430005, 66 pp., arXiv: 1205.1631 | DOI | MR | Zbl

[20] Boos H., Göhmann F., Klümper A., Nirov Kh. S., Razumov A. V., “Oscillator versus prefundamental representations”, J. Math. Phys., 57 (2016), 111702, 23 pp., arXiv: 1512.04446 | DOI | MR | Zbl

[21] Boos H., Göhmann F., Klümper A., Nirov Kh. S., Razumov A. V., “Oscillator versus prefundamental representations. II Arbitrary higher ranks”, J. Math. Phys., 58 (2017), 093504, 23 pp., arXiv: 1701.02627 | DOI | MR | Zbl

[22] Boos H., Hutsalyuk A., Nirov Kh. S., “On the calculation of the correlation functions of the $\mathfrak{sl}_3$-model by means of the reduced qKZ equation”, J. Phys. A: Math. Theor., 51 (2018), 445202, 29 pp., arXiv: 1804.09756 | DOI | MR | Zbl

[23] Bracken A. J., Gould M. D., Zhang Y.-Z., “Quantised affine algebras and parameter-dependent $R$-matrices”, Bull. Austral. Math. Soc., 51 (1995), 177–194 | DOI | MR | Zbl

[24] Bracken A. J., Gould M. D., Zhang Y.-Z., Delius G. W., “Infinite families of gauge-equivalent $R$-matrices and gradations of quantized affine algebras”, Internat. J. Modern Phys. B, 8 (1994), 3679–3691, arXiv: hep-th/9310183 | DOI | MR

[25] Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1994 | MR | Zbl

[26] Cherednik I. V., “Factorizing particles on a half-line and root systems”, Theoret. and Math. Phys., 61 (1984), 977–983 | DOI | MR | Zbl

[27] Cvitanović P., Group theory: birdtracks, Lie's, and exceptional groups, Princeton University Press, Princeton, NJ, 2008 | DOI | MR | Zbl

[28] Damiani I., “La $R$-matrice pour les algèbres quantiques de type affine non tordu”, Ann. Sci. École Norm. Sup. (4), 31 (1998), 493–523 | DOI | MR | Zbl

[29] de Vega H. J., González-Ruiz A., “Boundary $K$-matrices for the six vertex and the $n(2n-1)$ $A_{n-1}$ vertex models”, J. Phys. A: Math. Gen., 26 (1993), L519–L524, arXiv: hep-th/9211114 | DOI | MR | Zbl

[30] Drinfeld V. G., “Quantum groups”, Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986), v. 1, Amer. Math. Soc., Providence, RI, 1987, 798–820 | MR

[31] Fan H., Shi K.-J., Hou B.-Y., Yang Z.-X., “Integrable boundary conditions associated with the $Z_n\times Z_n$ Belavin model and solutions of reflection equation”, Internat. J. Modern Phys. A, 12 (1997), 2809–2823 | DOI | MR | Zbl

[32] Feynman R. P., “Space-time approach to quantum electrodynamics”, Phys. Rev., 76 (1949), 769–789 | DOI | MR | Zbl

[33] Frenkel I. B., Reshetikhin N. Yu., “Quantum affine algebras and holonomic difference equations”, Comm. Math. Phys., 146 (1992), 1–60 | DOI | MR | Zbl

[34] Gray N., Metaplectic ice for Cartan type C, arXiv: 1709.04971 | MR

[35] Hagendorf C., Morin-Duchesne A., “Symmetry classes of alternating sign matrices in a nineteen-vertex model”, J. Stat. Mech. Theory Exp., 2016 (2016), 053111, 68 pp., arXiv: 1601.01859 | DOI | MR

[36] Humphreys J. E., Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, 9, Springer-Verlag, New York–Berlin, 1972 | DOI | MR | Zbl

[37] Jimbo M., “A $q$-difference analogue of $U({\mathfrak g})$ and the Yang–Baxter equation”, Lett. Math. Phys., 10 (1985), 63–69 | DOI | MR | Zbl

[38] Jimbo M., “A $q$-analogue of $U(\mathfrak{gl}(N+1))$, Hecke algebra, and the Yang–Baxter equation”, Lett. Math. Phys., 11 (1986), 247–252 | DOI | MR | Zbl

[39] Jimbo M., “Quantum $R$ matrix for the generalized Toda system”, Comm. Math. Phys., 102 (1986), 537–547 | DOI | MR | Zbl

[40] Jimbo M., “Introduction to the Yang–Baxter equation”, Internat. J. Modern Phys. A, 4 (1989), 3759–3777 | DOI | MR | Zbl

[41] Kac V. G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990 | DOI | MR | Zbl

[42] Khoroshkin S. M., Tolstoy V. N., “The uniqueness theorem for the universal $R$-matrix”, Lett. Math. Phys., 24 (1992), 231–244 | DOI | MR | Zbl

[43] Khoroshkin S. M., Tolstoy V. N., “On Drinfel'd's realization of quantum affine algebras”, J. Geom. Phys., 11 (1993), 445–452 | DOI | MR | Zbl

[44] Khoroshkin S. M., Tolstoy V. N., Twisting of quantum (super)algebras. Connection of Drinfeld's and Cartan–Weyl realizations for quantum affine algebras, arXiv: hep-th/9404036 | MR

[45] Klimyk A., Schmüdgen K., Quantum groups and their representations, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997 | DOI | MR | Zbl

[46] Kojima T., “Baxter's $Q$-operator for the $W$-algebra $W_N$”, J. Phys. A: Math. Theor., 41 (2008), 355206, 16 pp., arXiv: 0803.3505 | DOI | MR | Zbl

[47] Kuperberg G., “Another proof of the alternating-sign matrix conjecture”, Int. Math. Res. Not., 1996 (1996), 139–150, arXiv: math.CO/9712207 | DOI | MR | Zbl

[48] Kuperberg G., “Symmetry classes of alternating-sign matrices under one roof”, Ann. of Math., 156 (2002), 835–866, arXiv: math.CO/0008184 | DOI | MR

[49] Levendorskii S., Soibelman Y., Stukopin V., “The quantum Weyl group and the universal quantum $R$-matrix for affine Lie algebra $A^{(1)}_1$”, Lett. Math. Phys., 27 (1993), 253–264 | DOI | MR

[50] Leznov A. N., Saveliev M. V., “A parametrization of compact groups”, Funct. Anal. Appl., 8 (1974), 347–348 | DOI | MR | Zbl

[51] Malara R., Lima-Santos A., “On ${\mathcal A}^{(1)}_{n-1}$, ${\mathcal B}^{(1)}_n$, ${\mathcal C}^{(1)}_n$, ${\mathcal D}^{(1)}_n$, ${\mathcal A}^{(2)}_{2n}$, ${\mathcal A}^{(2)}_{2n-1}$, and ${\mathcal D}^{(2)}_{n+1}$ reflection $K$-matrices”, J. Stat. Mech. Theory Exp., 2006 (2006), P09013, 61 pp., arXiv: nlin.SI/0412058 | DOI | MR | Zbl

[52] Meneghelli C., Teschner J., Integrable light-cone lattice discretizations from the universal ${R}$-matrix, arXiv: 1504.04572 | MR

[53] Mezincescu L., Nepomechie R. I., “Integrable open spin chains with nonsymmetric $R$-matrices”, J. Phys. A: Math. Gen., 24 (1991), L17–L23 | DOI | MR | Zbl

[54] Nirov Kh. S., Razumov A. V., “Quantum affine algebras and universal functional relations”, J. Phys. Conf. Ser., 670 (2016), 012037, 17 pp., arXiv: 1512.04308 | DOI

[55] Nirov Kh. S., Razumov A. V., “Highest $\ell$-weight representations and functional relations”, SIGMA, 13 (2017), 043, 31 pp., arXiv: 1702.08710 | DOI | MR | Zbl

[56] Nirov Kh. S., Razumov A. V., “Quantum groups and functional relations for lower rank”, J. Geom. Phys., 112 (2017), 1–28, arXiv: 1412.7342 | DOI | MR | Zbl

[57] Nirov Kh. S., Razumov A. V., “Quantum groups, Verma modules and $q$-oscillators: general linear case”, J. Phys. A: Math. Theor., 50 (2017), 305201, 19 pp., arXiv: 1610.02901 | DOI | MR | Zbl

[58] Penrose R., The road to reality. A complete guide to the laws of the universe, Alfred A. Knopf, Inc., New York, 2005 | MR | Zbl

[59] Penrose R., Rindler W., Spinors and space-time, v. 1, Cambridge Monographs on Mathematical Physics, Two-spinor calculus and relativistic fields, Cambridge University Press, Cambridge, 1984 | DOI | MR | Zbl

[60] Penrose R., Rindler W., Spinors and space-time, v. 2, Cambridge Monographs on Mathematical Physics, Spinor and twistor methods in space-time geometry, Cambridge University Press, Cambridge, 1986 | DOI | MR

[61] Razumov A. V., “Monodromy operators for higher rank”, J. Phys. A: Math. Theor., 46 (2013), 385201, 24 pp., arXiv: 1211.3590 | DOI | MR | Zbl

[62] Razumov A. V., Stroganov Yu. G., “Refined enumerations of some symmetry classes of alternating-sign matrices”, Theoret. and Math. Phys., 141 (2004), 1609–1630, arXiv: math-ph/0312071 | DOI | MR | Zbl

[63] Razumov A. V., Stroganov Yu. G., “Enumeration of odd-order alternating-sign half-turn-symmetric matrices”, Theoret. and Math. Phys., 148 (2006), 1174–1198, arXiv: math-ph/0504022 | DOI | MR | Zbl

[64] Razumov A. V., Stroganov Yu. G., “Enumeration of odd-order alternating-sign quarter-turn symmetric matrices”, Theoret. and Math. Phys., 149 (2006), 1639–1650, arXiv: math-ph/0507003 | DOI | MR | Zbl

[65] Regelskis V., Vlaar B., “Solutions of the $U_q(\widehat{\mathfrak{sl}}_N)$ reflection equations”, J. Phys. A: Math. Theor., 51 (2018), 345204, 41 pp., arXiv: 1803.06491 | DOI | MR | Zbl

[66] Ribeiro G. A. P., Klümper A., “Correlation functions of the integrable ${\rm SU}(n)$ spin chain”, J. Stat. Mech. Theory Exp., 2019 (2019), 013103, 31 pp., arXiv: 1804.10169 | DOI | MR

[67] Serre J.-P., Complex semisimple Lie algebras, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2001 | DOI | MR | Zbl

[68] Sklyanin E. K., “Boundary conditions for integrable quantum systems”, J. Phys. A: Math. Gen., 21 (1988), 2375–2389 | DOI | MR | Zbl

[69] 't Hooft G., Veltman M., Diagrammar, CERN Preprint 73-9, 1973

[70] Tanisaki T., Killing forms, Harish-Chandra homomorphisms and universal ${R}$-matrices for quantum algebras, World Scientific Publishing Co., Inc., River Edge, NJ, 1992, 941–961 | MR

[71] Tolstoy V. N., “Extremal projections for contragredient {L}ie algebras and superalgebras of finite growth”, Russian Math. Surveys, 44 (1989), 257–258 | DOI | MR

[72] Tolstoy V. N., Khoroshkin S. M., “The universal $R$-matrix for quantum utwisted affine Lie algebras”, Funct. Anal. Appl., 26 (1992), 69–71 | DOI | MR

[73] Usmani R. A., “Inversion of a tridiagonal Jacobi matrix”, Linear Algebra Appl., 212/213 (1994), 413–414 | DOI | MR | Zbl

[74] Varshalovich D. A., Moskalev A. N., Khersonskii V. K., Quantum theory of angular momentum, World Scientific Publishing Co., Inc., Teaneck, NJ, 1988 | DOI | MR

[75] Vlaar B., “Boundary transfer matrices and boundary quantum KZ equations”, J. Math. Phys., 56 (2015), 071705, 22 pp., arXiv: 1408.3364 | DOI | MR | Zbl

[76] Yutsis A. P., Levinson I. B., Vanagas V. V., Mathematical apparatus of the theory of angular momentum, Israel Program for Scientific Translations, Jerusalem, 1962 | MR | Zbl

[77] Zhang Y.-Z., Gould M. D., “Quantum affine algebras and universal ${R}$-matrix with spectral parameter”, Lett. Math. Phys., 31 (1994), 101–110, arXiv: hep-th/9307007 | DOI | MR | Zbl