@article{SIGMA_2019_15_a64,
author = {Natasha Rozhkovskaya},
title = {Multiparameter {Schur} $Q${-Functions} {Are} {Solutions} of the {BKP} {Hierarchy}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a64/}
}
Natasha Rozhkovskaya. Multiparameter Schur $Q$-Functions Are Solutions of the BKP Hierarchy. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a64/
[1] Alldridge A., Sahi S., Salmasian H., “Schur $Q$-functions and the {C}apelli eigenvalue problem for the {L}ie superalgebra $\mathfrak{q}(n)$”, Representation Theory and Harmonic Analysis on Symmetric Spaces, Contemp. Math., 714, Amer. Math. Soc., Providence, RI, 2018, 1–21, arXiv: 1701.03401 | DOI | MR | Zbl
[2] Date E., Jimbo M., Kashiwara M., Miwa T., “Transformation groups for soliton equations. IV A new hierarchy of soliton equations of KP-type”, Phys. D, 4 (1982), 343–365 | DOI | MR | Zbl
[3] Date E., Kashiwara M., Jimbo M., Miwa T., “Transformation groups for soliton equations”, Nonlinear integrable Systems – Classical Theory and Quantum Theory (Kyoto, 1981), World Sci. Publishing, Singapore, 1983, 39–119 | MR
[4] Date E., Kashiwara M., Miwa T., “Transformation groups for soliton equations. II Vertex operators and $\tau $ functions”, Proc. Japan Acad. Ser. A Math. Sci., 57 (1981), 387–392 | DOI | MR | Zbl
[5] Ikeda T., “Schubert classes in the equivariant cohomology of the Lagrangian Grassmannian”, Adv. Math., 215 (2007), 1–23 | DOI | MR | Zbl
[6] Ikeda T., Mihalcea L. C., Naruse H., “Factorial $P$- and $Q$-Schur functions represent equivariant quantum Schubert classes”, Osaka J. Math., 53 (2016), 591–619, arXiv: 1402.0892 | MR | Zbl
[7] Ikeda T., Naruse H., “Excited Young diagrams and equivariant Schubert calculus”, Trans. Amer. Math. Soc., 361 (2009), 5193–5221, arXiv: math.AG/0703637 | DOI | MR | Zbl
[8] Ivanov V. N., “Interpolation analogues of Schur $Q$-functions”, J. Math. Sci., 131 (2005), 5495–5507, arXiv: math.CO/0305419 | DOI | MR | Zbl
[9] Jarvis P. D., Yung C. M., “Symmetric functions and the KP and BKP hierarchies”, J. Phys. A: Math. Gen., 26 (1993), 5905–5922 | DOI | MR | Zbl
[10] Jimbo M., Miwa T., “Solitons and infinite-dimensional Lie algebras”, Publ. Res. Inst. Math. Sci., 19 (1983), 943–1001 | DOI | MR | Zbl
[11] Korotkikh S., “Dual multiparameter Schur $Q$-functions”, J. Math. Sci., 224 (2017), 263–268 | DOI | MR | Zbl
[12] Kvinge H., Ozan Oğuz C., Reeks M., “The center of the twisted Heisenberg category, factorial $P$-Schur functions, and transition functions on the Schur graph”, Sém. Lothar. Combin., 80B (2018), 76, 12 pp., arXiv: 1712.09626 | MR | Zbl
[13] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995 | MR
[14] Miwa T., Jimbo M., Date E., Solitons: differential equations, symmetries and infinite-dimensional algebras, Cambridge Tracts in Mathematics, 135, Cambridge University Press, Cambridge, 2000 | MR | Zbl
[15] Nazarov M., “Capelli identities for Lie superalgebras”, Ann. Sci. École Norm. Sup. (4), 30 (1997), 847–872, arXiv: q-alg/9610032 | DOI | MR | Zbl
[16] Sahi S., Salmasian H., Serganova V., The Capelli eigenvalue problem for Lie superalgebras, arXiv: 1807.07340
[17] Sato M., “Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold”, Nonlinear Partial Differential Equations in Applied Science (Tokyo, 1982), North-Holland Math. Stud., 81, North-Holland, Amsterdam, 1983, 259–271 | DOI | MR | Zbl
[18] You Y., “Polynomial solutions of the BKP hierarchy and projective representations of symmetric groups”, Infinite-Dimensional Lie Algebras and Groups (Luminy-Marseille, 1988), Adv. Ser. Math. Phys., 7, World Sci. Publ., Teaneck, NJ, 1989, 449–464 | MR
[19] You Y., “DKP and MDKP hierarchy of soliton equations”, Phys. D, 50 (1991), 429–462 | DOI | MR | Zbl