Lagrangian Grassmannians and Spinor Varieties in Characteristic Two
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The vector space of symmetric matrices of size $n$ has a natural map to a projective space of dimension $2^n-1$ given by the principal minors. This map extends to the Lagrangian Grassmannian ${\rm LG}(n,2n)$ and over the complex numbers the image is defined, as a set, by quartic equations. In case the characteristic of the field is two, it was observed that, for $n=3,4$, the image is defined by quadrics. In this paper we show that this is the case for any $n$ and that moreover the image is the spinor variety associated to ${\rm Spin}(2n+1)$. Since some of the motivating examples are of interest in supergravity and in the black-hole/qubit correspondence, we conclude with a brief examination of other cases related to integral Freudenthal triple systems over integral cubic Jordan algebras.
Keywords: Lagrangian Grassmannian, spinor variety, characteristic two, Freudenthal triple system.
@article{SIGMA_2019_15_a63,
     author = {Bert van Geemen and Alessio Marrani},
     title = {Lagrangian {Grassmannians} and {Spinor} {Varieties} in {Characteristic} {Two}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a63/}
}
TY  - JOUR
AU  - Bert van Geemen
AU  - Alessio Marrani
TI  - Lagrangian Grassmannians and Spinor Varieties in Characteristic Two
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a63/
LA  - en
ID  - SIGMA_2019_15_a63
ER  - 
%0 Journal Article
%A Bert van Geemen
%A Alessio Marrani
%T Lagrangian Grassmannians and Spinor Varieties in Characteristic Two
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a63/
%G en
%F SIGMA_2019_15_a63
Bert van Geemen; Alessio Marrani. Lagrangian Grassmannians and Spinor Varieties in Characteristic Two. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a63/

[1] Bellucci S., Ferrara S., Günaydin M., Marrani A., “Charge orbits of symmetric special geometries and attractors”, Internat. J. Modern Phys. A, 21 (2006), 5043–5097, arXiv: hep-th/0606209 | DOI | MR

[2] Borsten L., Dahanayake D., Duff M. J., Ebrahim H., Rubens W., “Black holes, qubits and octonions”, Phys. Rep., 471 (2009), 113–219, arXiv: 0809.4685 | DOI | MR

[3] Borsten L., Dahanayake D., Duff M. J., Rubens W., “Black holes admitting a Freudenthal dual”, Phys. Rev. D, 80 (2009), 026003, 28 pp., arXiv: 0903.5517 | DOI | MR

[4] Borsten L., Duff M. J., Ferrara S., Marrani A., Rubens W., “Small orbits”, Phys. Rev. D, 85 (2012), 086002, 27 pp., arXiv: 1108.0424 | DOI

[5] Borsten L., Duff M. J., Lévay P., “The black-hole/qubit correspondence: an up-to-date review”, Classical Quantum Gravity, 29 (2012), 224008, 80 pp., arXiv: 1206.3166 | DOI | MR | Zbl

[6] Brown R. B., “Groups of type $E_{7}$”, J. Reine Angew. Math., 236 (1969), 79–102 | DOI | MR | Zbl

[7] Cerchiai B. L., Ferrara S., Marrani A., Zumino B., “Duality, entropy, and ADM mass in supergravity”, Phys. Rev. D, 79 (2009), 125010, 23 pp., arXiv: 0902.3973 | DOI | MR

[8] Chevalley C. C., The algebraic theory of spinors, Columbia University Press, New York, 1954 | MR | Zbl

[9] Conrad B., Gabber O., Prasad G., Pseudo-reductive groups, New Mathematical Monographs, 26, 2nd ed., Cambridge University Press, Cambridge, 2015 | DOI | MR | Zbl

[10] Duff M. J., “String triality, black hole entropy, and Cayley's hyperdeterminant”, Phys. Rev. D, 76 (2007), 025017, 4 pp., arXiv: hep-th/0601134 | DOI | MR | Zbl

[11] Ferrara S., Gimon E. G., Kallosh R., “Magic supergravities, $N=8$ black hole composites”, Phys. Rev. D, 74 (2006), 125018, 18 pp., arXiv: hep-th/0606211 | DOI | MR

[12] Ferrara S., Günaydin M., “Orbits of exceptional groups, duality and BPS states in string theory”, Internat. J. Modern Phys. A, 13 (1998), 2075–2088, arXiv: hep-th/9708025 | DOI | MR | Zbl

[13] Ferrara S., Kallosh R., Marrani A., “Degeneration of groups of type $E_7$ and minimal coupling in supergravity”, J. High Energy Phys., 2012:6 (2012), 074, 47 pp., arXiv: 1202.1290 | DOI | MR

[14] Ferrara S., Marrani A., “On the moduli space of non-BPS attractors for ${\mathcal N}=2$ symmetric manifolds”, Phys. Lett. B, 652 (2007), 111–117, arXiv: 0706.1667 | DOI | MR | Zbl

[15] Freudenthal H., “Sur le groupe exceptionnel $E_7$”, Nederl. Akad. Wetensch. Proc. Ser. A, 15 (1953), 81–89 | DOI | MR

[16] van Geemen B., “Schottky–Jung relations and vectorbundles on hyperelliptic curves”, Math. Ann., 281 (1988), 431–449 | DOI | MR | Zbl

[17] Gow R., “Contraction of exterior powers in characteristic $2$ and the spin module”, Geom. Dedicata, 64 (1997), 283–295 | DOI | MR | Zbl

[18] Griffiths P., Harris J., Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience, New York, 1978 | MR | Zbl

[19] Holtz O., Sturmfels B., “Hyperdeterminantal relations among symmetric principal minors”, J. Algebra, 316 (2007), 634–648, arXiv: math.RA/0604374 | DOI | MR | Zbl

[20] Holweck F., “Geometric constructions over ${\mathbb C}$ and ${\mathbb F}_2$ for quantum information”, Quantum Physics and Geometry, Lect. Notes Unione Mat. Ital., 25, Springer, Cham, 2019, 87–124, arXiv: 1810.04258 | DOI | MR

[21] Holweck F., Saniga M., Lévay P., “A notable relation between $N$-qubit and $2^{N-1}$-qubit Pauli groups via binary ${\rm LGr}(N,2N)$”, SIGMA, 10 (2014), 041, 16 pp., arXiv: 1311.2408 | DOI | MR | Zbl

[22] Iliev A., Ranestad K., “Geometry of the Lagrangian Grassmannian $LG(3,6)$ with applications to Brill–Noether loci”, Michigan Math. J., 53 (2005), 383–417, arXiv: math.AG/0209169 | DOI | MR | Zbl

[23] Jordan P., von Neumann J., Wigner E., “On an algebraic generalization of the quantum mechanical formalism”, Ann. of Math., 35 (1934), 29–64 | DOI | MR

[24] Kallosh R., Linde A., “Strings, black holes, and quantum information”, Phys. Rev. D, 73 (2006), 104033, 15 pp., arXiv: hep-th/0602061 | DOI | MR

[25] Kleidman P., Liebeck M., The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, 129, Cambridge University Press, Cambridge, 1990 | DOI | MR | Zbl

[26] Krutelevich S., “Jordan algebras, exceptional groups, and Bhargava composition”, J. Algebra, 314 (2007), 924–977, arXiv: math.NT/0411104 | DOI | MR | Zbl

[27] Landsberg J. M., Manivel L., “The projective geometry of Freudenthal's magic square”, J. Algebra, 239 (2001), 477–512, arXiv: math.AG/9908039 | DOI | MR | Zbl

[28] Lévay P., Holweck F., “Finite geometric toy model of spacetime as an error correcting code”, Phys. Rev. D, 99 (2019), 086015, 49 pp., arXiv: 1812.07242 | DOI

[29] Manivel L., “On spinor varieties and their secants”, SIGMA, 5 (2009), 078, 22 pp., arXiv: 0904.0565 | DOI | MR | Zbl

[30] Manivel L., Michałek M., “Secants of minuscule and cominuscule minimal orbits”, Linear Algebra Appl., 481 (2015), 288–312, arXiv: 1401.1956 | DOI | MR | Zbl

[31] Milne J. S., Algebraic groups: the theory of group schemes of finite type over a field, Cambridge Studies in Advanced Mathematics, 170, Cambridge University Press, Cambridge, 2017 | DOI | MR | Zbl

[32] Oeding L., “Set-theoretic defining equations of the tangential variety of the Segre variety”, J. Pure Appl. Algebra, 215 (2011), 1516–1527, arXiv: 0911.5276 | DOI | MR | Zbl

[33] Oeding L., “Set-theoretic defining equations of the variety of principal minors of symmetric matrices”, Algebra Number Theory, 5 (2011), 75–109, arXiv: 0809.4236 | DOI | MR | Zbl

[34] Procesi C., Lie groups: an approach through invariants and representations, Universitext, Springer, New York, 2007 | DOI | MR | Zbl

[35] Ranestad K., Schreyer F.-O., “Varieties of sums of powers”, J. Reine Angew. Math., 525 (2000), 147–181, arXiv: math.AG/9801110 | DOI | MR | Zbl

[36] Russo F., “Projective duality and non-degenerated symplectic Monge–Ampère equations”, Geometry of Lagrangian Grassmannians and Nonlinear PDEs, Banach Center Publ., 117, Polish Acad. Sci. Inst. Math., Warsaw, 2019, 113–144 | DOI | MR | Zbl

[37] Seshadri C. S., “Geometry of $G/P$ I Theory of standard monomials for minuscule representations”, C.P Ramanujam – a tribute, Tata Inst. Fund. Res. Studies in Math., 8, Springer, Berlin–New York, 1978, 207–239 | MR

[38] Steinberg R., “The isomorphism and isogeny theorems for reductive algebraic groups”, J. Algebra, 216 (1999), 366–383 | DOI | MR | Zbl

[39] Sturmfels B., Velasco M., “Blow-ups of ${\mathbb P}^{n-3}$ at $n$ points and spinor varieties”, J. Commut. Algebra, 2 (2010), 223–244, arXiv: 0906.5096 | DOI | MR | Zbl

[40] Wilson R. A., “A quaternionic construction of $E_7$”, Proc. Amer. Math. Soc., 142 (2014), 867–880 | DOI | MR | Zbl

[41] Zak F. L., Tangents and secants of algebraic varieties, Translations of Mathematical Monographs, 127, Amer. Math. Soc., Providence, RI, 1993 | DOI | MR | Zbl