Mots-clés : Miura transformation
@article{SIGMA_2019_15_a61,
author = {Rustem N. Garifullin and Ravil I. Yamilov},
title = {Integrable {Modifications} of the {Ito{\textendash}Narita{\textendash}Bogoyavlensky} {Equation}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a61/}
}
TY - JOUR AU - Rustem N. Garifullin AU - Ravil I. Yamilov TI - Integrable Modifications of the Ito–Narita–Bogoyavlensky Equation JO - Symmetry, integrability and geometry: methods and applications PY - 2019 VL - 15 UR - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a61/ LA - en ID - SIGMA_2019_15_a61 ER -
Rustem N. Garifullin; Ravil I. Yamilov. Integrable Modifications of the Ito–Narita–Bogoyavlensky Equation. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a61/
[1] Adler V. E., “Necessary integrability conditions for evolutionary lattice equations”, Theoret. and Math. Phys., 181 (2014), 1367–1382, arXiv: 1406.1522 | DOI | MR | Zbl
[2] Adler V. E., “Integrable Möbius-invariant evolutionary lattices of second order”, Funct. Anal. Appl., 50 (2016), 257–267, arXiv: 1605.00018 | DOI | MR | Zbl
[3] Bogoyavlensky O. I., “Integrable discretizations of the KdV equation”, Phys. Lett. A, 134 (1988), 34–38 | DOI | MR
[4] Garifullin R. N., Gubbiotti G., Yamilov R. I., “Integrable discrete autonomous quad-equations admitting, as generalized symmetries, known five-point differential-difference equations”, J. Nonlinear Math. Phys., 26 (2019), 333–357, arXiv: 1810.11184 | DOI | MR | Zbl
[5] Garifullin R. N., Yamilov R. I., “Integrable discrete nonautonomous quad-equations as Bäcklund auto-transformations for known Volterra and Toda type semidiscrete equations”, J. Phys. Conf. Ser., 621 (2015), 012005, 18 pp., arXiv: 1405.1835 | DOI
[6] Garifullin R. N., Yamilov R. I., Levi D., “Non-invertible transformations of differential-difference equations”, J. Phys. A: Math. Theor., 49 (2016), 37LT01, 12 pp., arXiv: 1604.05634 | DOI | MR | Zbl
[7] Garifullin R. N., Yamilov R. I., Levi D., “Classification of five-point differential-difference equations”, J. Phys. A: Math. Theor., 50 (2017), 125201, 27 pp., arXiv: 1610.07342 | DOI | MR | Zbl
[8] Garifullin R. N., Yamilov R. I., Levi D., “Classification of five-point differential-difference equations II”, J. Phys. A: Math. Theor., 51 (2018), 065204, 16 pp., arXiv: 1708.02456 | DOI | MR | Zbl
[9] Itoh Y., “An $H$-theorem for a system of competing species”, Proc. Japan Acad., 51 (1975), 374–379 | DOI | MR | Zbl
[10] Kuznetsova M. N., Pekcan A., Zhiber A. V., “The Klein–Gordon equation and differential substitutions of the form $v=\phi(u,u_x,u_y)$”, SIGMA, 8 (2012), 090, 37 pp., arXiv: 1111.7255 | DOI | MR | Zbl
[11] Levi D., Petrera M., Scimiterna C., Yamilov R., “On Miura transformations and Volterra-type equations associated with the Adler–Bobenko–Suris equations”, SIGMA, 4 (2008), 077, 14 pp., arXiv: 0802.1850 | DOI | MR | Zbl
[12] Mikhailov A. V., Xenitidis P., “Second order integrability conditions for difference equations: an integrable equation”, Lett. Math. Phys., 104 (2014), 431–450, arXiv: 1305.4347 | DOI | MR | Zbl
[13] Narita K., “Soliton solution to extended Volterra equation”, J. Phys. Soc. Japan, 51 (1982), 1682–1685 | DOI | MR
[14] Papageorgiou V. G., Nijhoff F. W., “On some integrable discrete-time systems associated with the Bogoyavlensky lattices”, Phys. A, 228 (1996), 172–188 | DOI | MR
[15] Scimiterna C., Hay M., Levi D., “On the integrability of a new lattice equation found by multiple scale analysis”, J. Phys. A: Math. Theor., 47 (2014), 265204, 16 pp., arXiv: 1401.5691 | DOI | MR | Zbl
[16] Sokolov V. V., “On the symmetries of evolution equations”, Russian Math. Surveys, 43:5 (1988), 165–204 | DOI | MR | Zbl
[17] Startsev S. Ya., “On hyperbolic equations that admit differential substitutions”, Theoret. and Math. Phys., 127 (2001), 460–470 | DOI | MR | Zbl
[18] Startsev S. Ya., “On non-point invertible transformations of difference and differential-difference equations”, SIGMA, 6 (2010), 092, 14 pp., arXiv: 1010.0361 | DOI | MR | Zbl
[19] Suris Yu. B., The problem of integrable discretization: Hamiltonian approach, Progress in Mathematics, 219, Birkhäuser Verlag, Basel, 2003 | DOI | MR | Zbl
[20] Wadati M., “Transformation theories for nonlinear discrete systems”, Progr. Theoret. Phys. Suppl., 59 (1976), 36–63 | DOI
[21] Xenitidis P., “Determining the symmetries of difference equations”, Proc. A, 474 (2018), 20180340, 20 pp. | DOI | MR
[22] Yamilov R. I., “Invertible changes of variables generated by Bäcklund transformations”, Theoret. and Math. Phys., 85 (1990), 1269–1275 | DOI | MR | Zbl
[23] Yamilov R. I., “On the construction of Miura type transformations by others of this kind”, Phys. Lett. A, 173 (1993), 53–57 | DOI | MR
[24] Yamilov R. I., “Construction scheme for discrete Miura transformations”, J. Phys. A: Math. Gen., 27 (1994), 6839–6851 | DOI | MR | Zbl
[25] Yamilov R. I., “Symmetries as integrability criteria for differential difference equations”, J. Phys. A: Math. Gen., 39 (2006), R541–R623 | DOI | MR | Zbl
[26] Zhang H., Tu G. Z., Oevel W., Fuchssteiner B., “Symmetries, conserved quantities, and hierarchies for some lattice systems with soliton structure”, J. Math. Phys., 32 (1991), 1908–1918 | DOI | MR | Zbl