@article{SIGMA_2019_15_a60,
author = {Ga\"etan Borot and Paul Norbury},
title = {Loop {Equations} for {Gromov{\textendash}Witten} {Invariant} of $\mathbb{P}^1$},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a60/}
}
Gaëtan Borot; Paul Norbury. Loop Equations for Gromov–Witten Invariant of $\mathbb{P}^1$. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a60/
[1] Behrend K., Fantechi B., “The intrinsic normal cone”, Invent. Math., 128 (1997), 45–88, arXiv: alg-geom/9601010 | DOI | MR | Zbl
[2] Borot G., Eynard B., Orantin N., “Abstract loop equations, topological recursion and new applications”, Commun. Number Theory Phys., 9 (2015), 51–187, arXiv: 1303.5808 | DOI | MR | Zbl
[3] Dubrovin B., “Geometry of $2$D topological field theories”, Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Math., 1620, eds. M. Francaviglia, S. Greco, Springer, Berlin, 1996, 120–348, arXiv: hep-th/9407018 | DOI | MR | Zbl
[4] Dunin-Barkowski P., Norbury P., Orantin N., Popolitov A., Shadrin S., “Primary invariants of Hurwitz Frobenius manifolds”, Topological Recursion and its Influence in Analysis, Geometry, and Topology, Proc. Sympos. Pure Math., 100, eds. C. C. M. Liu, M. Mulase, Amer. Math. Soc., Providence, RI, 2018, 297–331, arXiv: 1605.07644 | DOI | MR
[5] Dunin-Barkowski P., Orantin N., Shadrin S., Spitz L., “Identification of the Givental formula with the spectral curve topological recursion procedure”, Comm. Math. Phys., 328 (2014), 669–700, arXiv: 1211.4021 | DOI | MR | Zbl
[6] Eguchi T., Hori K., Xiong C.-S., “Quantum cohomology and Virasoro algebra”, Phys. Lett. B, 402 (1997), 71–80, arXiv: hep-th/9703086 | DOI | MR | Zbl
[7] Eynard B., Orantin N., “Topological recursion in enumerative geometry and random matrices”, J. Phys. A: Math. Theor., 42 (2009), 293001, 117 pp., arXiv: 0811.3531 | DOI | MR | Zbl
[8] Givental A. B., “Gromov–Witten invariants and quantization of quadratic Hamiltonians”, Mosc. Math. J., 1 (2001), 551–568, arXiv: math.AG/0108100 | DOI | MR | Zbl
[9] Kontsevich M., Manin Yu., “Gromov–Witten classes, quantum cohomology, and enumerative geometry”, Comm. Math. Phys., 164 (1994), 525–562, arXiv: hep-th/9402147 | DOI | MR | Zbl
[10] Kontsevich M., Manin Yu., “Relations between the correlators of the topological sigma-model coupled to gravity”, Comm. Math. Phys., 196 (1998), 385–398, arXiv: alg-geom/9708024 | DOI | MR | Zbl
[11] McClure J. P., Wong R., “Explicit error terms for asymptotic expansions of Stieltjes transforms”, J. Inst. Math. Appl., 22 (1978), 129–145 | DOI | MR | Zbl
[12] Norbury P., “Stationary Gromov–Witten invariants of projective spaces”, Acta Math. Sin. (Engl. Ser.), 33 (2017), 1163–1183, arXiv: 1112.6400 | DOI | MR | Zbl
[13] Norbury P., Scott N., “Gromov–Witten invariants of $\mathbb{P}^1$ and Eynard–Orantin invariants”, Geom. Topol., 18 (2014), 1865–1910, arXiv: 1106.1337 | DOI | MR | Zbl
[14] Okounkov A., Pandharipande R., “Gromov–Witten theory, Hurwitz theory, and completed cycles”, Ann. of Math., 163 (2006), 517–560, arXiv: math.AG/0204305 | DOI | MR | Zbl
[15] Okounkov A., Pandharipande R., “Virasoro constraints for target curves”, Invent. Math., 163 (2006), 47–108, arXiv: math.AG/0308097 | DOI | MR | Zbl
[16] Orantin N., Symplectic invariants, Virasoro constraints and Givental decomposition, arXiv: 0808.0635
[17] Teleman C., “The structure of 2D semi-simple field theories”, Invent. Math., 188 (2012), 525–588, arXiv: 0712.0160 | DOI | MR | Zbl