Loop Equations for Gromov–Witten Invariant of $\mathbb{P}^1$
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that non-stationary Gromov–Witten invariants of $\mathbb{P}^1$ can be extracted from open periods of the Eynard–Orantin topological recursion correlators $\omega_{g,n}$ whose Laurent series expansion at $\infty$ compute the stationary invariants. To do so, we overcome the technical difficulties to global loop equations for the spectral $x(z) = z + 1/z$ and $y(z) = \mathrm{ln}\, z$ from the local loop equations satisfied by the $\omega_{g,n}$, and check these global loop equations are equivalent to the Virasoro constraints that are known to govern the full Gromov–Witten theory of $\mathbb{P}^1$.
Keywords: Virasoro constraints, topological recursion, Gromov–Witten theory, mirror symmetry.
@article{SIGMA_2019_15_a60,
     author = {Ga\"etan Borot and Paul Norbury},
     title = {Loop {Equations} for {Gromov{\textendash}Witten} {Invariant} of $\mathbb{P}^1$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a60/}
}
TY  - JOUR
AU  - Gaëtan Borot
AU  - Paul Norbury
TI  - Loop Equations for Gromov–Witten Invariant of $\mathbb{P}^1$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a60/
LA  - en
ID  - SIGMA_2019_15_a60
ER  - 
%0 Journal Article
%A Gaëtan Borot
%A Paul Norbury
%T Loop Equations for Gromov–Witten Invariant of $\mathbb{P}^1$
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a60/
%G en
%F SIGMA_2019_15_a60
Gaëtan Borot; Paul Norbury. Loop Equations for Gromov–Witten Invariant of $\mathbb{P}^1$. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a60/

[1] Behrend K., Fantechi B., “The intrinsic normal cone”, Invent. Math., 128 (1997), 45–88, arXiv: alg-geom/9601010 | DOI | MR | Zbl

[2] Borot G., Eynard B., Orantin N., “Abstract loop equations, topological recursion and new applications”, Commun. Number Theory Phys., 9 (2015), 51–187, arXiv: 1303.5808 | DOI | MR | Zbl

[3] Dubrovin B., “Geometry of $2$D topological field theories”, Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Math., 1620, eds. M. Francaviglia, S. Greco, Springer, Berlin, 1996, 120–348, arXiv: hep-th/9407018 | DOI | MR | Zbl

[4] Dunin-Barkowski P., Norbury P., Orantin N., Popolitov A., Shadrin S., “Primary invariants of Hurwitz Frobenius manifolds”, Topological Recursion and its Influence in Analysis, Geometry, and Topology, Proc. Sympos. Pure Math., 100, eds. C. C. M. Liu, M. Mulase, Amer. Math. Soc., Providence, RI, 2018, 297–331, arXiv: 1605.07644 | DOI | MR

[5] Dunin-Barkowski P., Orantin N., Shadrin S., Spitz L., “Identification of the Givental formula with the spectral curve topological recursion procedure”, Comm. Math. Phys., 328 (2014), 669–700, arXiv: 1211.4021 | DOI | MR | Zbl

[6] Eguchi T., Hori K., Xiong C.-S., “Quantum cohomology and Virasoro algebra”, Phys. Lett. B, 402 (1997), 71–80, arXiv: hep-th/9703086 | DOI | MR | Zbl

[7] Eynard B., Orantin N., “Topological recursion in enumerative geometry and random matrices”, J. Phys. A: Math. Theor., 42 (2009), 293001, 117 pp., arXiv: 0811.3531 | DOI | MR | Zbl

[8] Givental A. B., “Gromov–Witten invariants and quantization of quadratic Hamiltonians”, Mosc. Math. J., 1 (2001), 551–568, arXiv: math.AG/0108100 | DOI | MR | Zbl

[9] Kontsevich M., Manin Yu., “Gromov–Witten classes, quantum cohomology, and enumerative geometry”, Comm. Math. Phys., 164 (1994), 525–562, arXiv: hep-th/9402147 | DOI | MR | Zbl

[10] Kontsevich M., Manin Yu., “Relations between the correlators of the topological sigma-model coupled to gravity”, Comm. Math. Phys., 196 (1998), 385–398, arXiv: alg-geom/9708024 | DOI | MR | Zbl

[11] McClure J. P., Wong R., “Explicit error terms for asymptotic expansions of Stieltjes transforms”, J. Inst. Math. Appl., 22 (1978), 129–145 | DOI | MR | Zbl

[12] Norbury P., “Stationary Gromov–Witten invariants of projective spaces”, Acta Math. Sin. (Engl. Ser.), 33 (2017), 1163–1183, arXiv: 1112.6400 | DOI | MR | Zbl

[13] Norbury P., Scott N., “Gromov–Witten invariants of $\mathbb{P}^1$ and Eynard–Orantin invariants”, Geom. Topol., 18 (2014), 1865–1910, arXiv: 1106.1337 | DOI | MR | Zbl

[14] Okounkov A., Pandharipande R., “Gromov–Witten theory, Hurwitz theory, and completed cycles”, Ann. of Math., 163 (2006), 517–560, arXiv: math.AG/0204305 | DOI | MR | Zbl

[15] Okounkov A., Pandharipande R., “Virasoro constraints for target curves”, Invent. Math., 163 (2006), 47–108, arXiv: math.AG/0308097 | DOI | MR | Zbl

[16] Orantin N., Symplectic invariants, Virasoro constraints and Givental decomposition, arXiv: 0808.0635

[17] Teleman C., “The structure of 2D semi-simple field theories”, Invent. Math., 188 (2012), 525–588, arXiv: 0712.0160 | DOI | MR | Zbl