@article{SIGMA_2019_15_a6,
author = {Victor Manuel Aricheta},
title = {Supersingular {Elliptic} {Curves} and {Moonshine}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a6/}
}
Victor Manuel Aricheta. Supersingular Elliptic Curves and Moonshine. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a6/
[1] Borcherds R. E., “Monstrous moonshine and monstrous Lie superalgebras”, Invent. Math., 109 (1992), 405–444 | DOI | MR | Zbl
[2] Bringmann K., Folsom A., Ono K., Rolen L., Harmonic Maass forms and mock modular forms: theory and applications, American Mathematical Society Colloquium Publications, 64, Amer. Math. Soc., Providence, RI, 2017 | DOI | MR | Zbl
[3] Cheng M. C. N., “$K3$ surfaces, ${\mathcal N}=4$ dyons and the Mathieu group $M_{24}$”, Commun. Number Theory Phys., 4 (2010), 623–657, arXiv: 1005.5415 | DOI | MR | Zbl
[4] Cheng M. C. N., Duncan J. F. R., “On Rademacher sums, the largest Mathieu group and the holographic modularity of moonshine”, Commun. Number Theory Phys., 6 (2012), 697–758, arXiv: 1110.3859 | DOI | MR | Zbl
[5] Cheng M. C. N., Duncan J. F. R., Optimal mock Jacobi theta functions, arXiv: 1605.04480
[6] Cheng M. C. N., Duncan J. F. R., Harvey J. A., “Umbral moonshine”, Commun. Number Theory Phys., 8 (2014), 101–242, arXiv: 1204.2779 | DOI | MR | Zbl
[7] Cheng M. C. N., Duncan J. F. R., Harvey J. A., “Umbral moonshine and the Niemeier lattices”, Res. Math. Sci., 1 (2014), 3, 81 pp., arXiv: 1307.5793 | DOI | MR
[8] Cheng M. C. N., Duncan J. F. R., Harvey J. A., “Weight one Jacobi forms and umbral moonshine”, J. Phys. A: Math. Theor., 51 (2018), 104002, 37 pp., arXiv: 1703.03968 | DOI | MR | Zbl
[9] Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A., Atlas of finite groups: maximal subgroups and ordinary characters for simple groups, Oxford University Press, Eynsham, 1985 (with computational assistance from J. G. Thackray) | MR | Zbl
[10] Conway J. H., Norton S. P., “Monstrous moonshine”, Bull. London Math. Soc., 11 (1979), 308–339 | DOI | MR | Zbl
[11] Duncan J. F. R., Griffin M. J., Ono K., “Proof of the umbral moonshine conjecture”, Res. Math. Sci., 2 (2015), 26, 47 pp., arXiv: 1503.01472 | DOI | MR | Zbl
[12] Duncan J. F. R., Ono K., “The Jack Daniels problem”, J. Number Theory, 161 (2016), 230–239, arXiv: 1411.5354 | DOI | MR | Zbl
[13] Eguchi T., Hikami K., “Note on twisted elliptic genus of $K3$ surface”, Phys. Lett. B, 694 (2011), 446–455, arXiv: 1008.4924 | DOI | MR
[14] Eguchi T., Ooguri H., Tachikawa Y., “Notes on the $K3$ surface and the Mathieu group $M_{24}$”, Exp. Math., 20 (2011), 91–96, arXiv: 1004.0956 | DOI | MR | Zbl
[15] Ferenbaugh C. R., “The genus-zero problem for $n|h$-type groups”, Duke Math. J., 72 (1993), 31–63 | DOI | MR | Zbl
[16] Frenkel I. B., Lepowsky J., Meurman A., “A natural representation of the Fischer–Griess Monster with the modular function $J$ as character”, Proc. Nat. Acad. Sci. USA, 81 (1984), 3256–3260 | DOI | MR | Zbl
[17] Furumoto M., Hasegawa Y., “Hyperelliptic quotients of modular curves $X_0(N)$”, Tokyo J. Math., 22 (1999), 105–125 | DOI | MR | Zbl
[18] Gaberdiel M. R., Hohenegger S., Volpato R., “Mathieu twining characters for $K3$”, J. High Energy Phys., 2010:9 (2010), 058, 20 pp., arXiv: 1006.0221 | DOI | MR | Zbl
[19] Gaberdiel M. R., Hohenegger S., Volpato R., “Mathieu Moonshine in the elliptic genus of $K3$”, J. High Energy Phys., 2010:10 (2010), 062, 24 pp., arXiv: 1008.3778 | DOI | MR | Zbl
[20] Gannon T., “Much ado about Mathieu”, Adv. Math., 301 (2016), 322–358, arXiv: 1211.5531 | DOI | MR | Zbl
[21] Humphreys J. E., Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, 9, Springer-Verlag, New York–Berlin, 1972 | DOI | MR | Zbl
[22] Kaneko M., Zagier D., “Supersingular $j$-invariants, hypergeometric series, and Atkin's orthogonal polynomials”, Computational Perspectives on Number Theory (Chicago, IL, 1995), AMS/IP Stud. Adv. Math., 7, Amer. Math. Soc., Providence, RI, 1998, 97–126 | DOI | MR | Zbl
[23] Nakaya T., The number of linear factors of supersingular polynomials and sporadic simple groups, arXiv: 1809.02363
[24] Ogg A. P., “Automorphismes de courbes modulaires”, Séminaire Delange–Pisot–Poitou, 16e année (1974/75), Théorie des nombres, Secrétariat Mathématique, Paris, 1975, 1–8 | MR
[25] Ogg A. P., “On the reduction modulo $p$ of $X_0(pM)$”, US-Japan Seminar on Applications of Automorphic Forms to Number Theory, University of Michigan, Ann Arbor, 1975, 204–211
[26] SageMath, the Sage Mathematics Software System (Version 8.1), , The Sage Developers, 2017 https://www.sagemath.org
[27] Sakai Y., “The Atkin orthogonal polynomials for the low-level Fricke groups and their application”, Int. J. Number Theory, 7 (2011), 1637–1661 | DOI | MR | Zbl
[28] Sakai Y., “On modular solutions of fractional weights for the Kaneko–Zagier equation for $\Gamma^*_0(2)$ and $\Gamma^*_0(3)$”, Ramanujan J., 37 (2015), 461–467 | DOI | MR | Zbl
[29] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.10.0, , 2018 https://www.gap-system.org
[30] The PARI Group, PARI/GP version 2.9.5, , Université Bordeaux, 2018 http://pari.math.u-bordeaux.fr/
[31] Thompson J. G., “Some numerology between the Fischer–Griess Monster and the elliptic modular function”, Bull. London Math. Soc., 11 (1979), 352–353 | DOI | MR | Zbl
[32] Tsutsumi H., “The Atkin orthogonal polynomials for congruence subgroups of low levels”, Ramanujan J., 14 (2007), 223–247 | DOI | MR | Zbl