@article{SIGMA_2019_15_a59,
author = {Jo\~ao C. A. Barata and Marcos Brum},
title = {Wavepackets on de {Sitter} {Spacetime}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a59/}
}
João C. A. Barata; Marcos Brum. Wavepackets on de Sitter Spacetime. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a59/
[1] Akhmedov E. T., “Lecture notes on interacting quantum fields in de Sitter space”, Internat. J. Modern Phys. D, 23 (2014), 1430001, 61 pp., arXiv: 1309.2557 | DOI | MR | Zbl
[2] Andrews G. E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl
[3] Angelopoulos E., Flato M., Fronsdal C., Sternheimer D., “Massless particles, conformal group, and de Sitter universe”, Phys. Rev. D, 23 (1981), 1278–1289 | DOI | MR
[4] Araki H., Haag R., “Collision cross sections in terms of local observables”, Comm. Math. Phys., 4 (1967), 77–91 | DOI | MR
[5] Bargmann V., “Irreducible unitary representations of the Lorentz group”, Ann. of Math., 48 (1947), 568–640 | DOI | MR | Zbl
[6] Barut A. O., Böhm A., “Reduction of a class of ${\rm O}(4,2)$ representations with respect to ${\rm SO}(4,1)$ and ${\rm SO}(3,2)$”, J. Math. Phys., 11 (1970), 2938–2945 | DOI | MR
[7] Bros J., Epstein H., Gaudin M., Moschella U., Pasquier V., “Triangular invariants, three-point functions and particle stability on the de Sitter universe”, Comm. Math. Phys., 295 (2010), 261–288, arXiv: 0901.4223 | DOI | MR | Zbl
[8] Bros J., Epstein H., Moschella U., “Analyticity properties and thermal effects for general quantum field theory on de Sitter space-time”, Comm. Math. Phys., 196 (1998), 535–570, arXiv: gr-qc/9801099 | DOI | MR | Zbl
[9] Bros J., Epstein H., Moschella U., “The lifetime of a massive particle in a de Sitter universe”, J. Cosmol. Astropart. Phys., 2008:2 (2008), 003, 8 pp., arXiv: hep-th/0612184 | DOI
[10] Bros J., Epstein H., Moschella U., “Particle decays and stability on the de Sitter universe”, Ann. Henri Poincaré, 11 (2010), 611–658, arXiv: 0812.3513 | DOI | MR | Zbl
[11] Bros J., Gazeau J. P., Moschella U., “Quantum field theory in the de Sitter universe”, Phys. Rev. Lett., 73 (1994), 1746–1749 | DOI | MR | Zbl
[12] Bros J., Moschella U., “Two-point functions and quantum fields in de Sitter universe”, Rev. Math. Phys., 8 (1996), 327–391, arXiv: gr-qc/9511019 | DOI | MR | Zbl
[13] Bros J., Moschella U., “Fourier analysis and holomorphic decomposition on the one-sheeted hyperboloid”, Géométrie complexe. II Aspects contemporains dans les mathématiques et la physique, Hermann Éd. Sci. Arts, Paris, 2004, 27–58, arXiv: math-ph/0311052 | MR | Zbl
[14] Dixmier J., “Représentations intégrables du groupe de De Sitter”, Bull. Soc. Math. France, 89 (1961), 9–41 | DOI | MR | Zbl
[15] Dobrev V. K., Mack G., Petkova V. B., Petrova S. G., Todorov I. T., Harmonic analysis on the $n$-dimensional Lorentz group and its application to conformal quantum field theory, Lecture Notes in Phys., 63, Springer-Verlag, Berlin–Heidelberg–New York, 1977 | DOI | Zbl
[16] Dooley A. H., Rice J. W., “On contractions of semisimple Lie groups”, Trans. Amer. Math. Soc., 289 (1985), 185–202 | DOI | MR | Zbl
[17] Dybalski W., “From Faddeev–Kulish to LSZ Towards a non-perturbative description of colliding electrons”, Nuclear Phys. B, 925 (2017), 455–469, arXiv: 1706.09057 | DOI | MR | Zbl
[18] Dybalski W., Gérard C., “A criterion for asymptotic completeness in local relativistic QFT”, Comm. Math. Phys., 332 (2014), 1167–1202, arXiv: 1308.5187 | DOI | MR | Zbl
[19] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Tables of integral transforms, v. I, McGraw-Hill Book Company, Inc., New York, 1954 https://authors.library.caltech.edu/43489/
[20] Folland G. B., A course in abstract harmonic analysis, Textbooks in Mathematics, 2nd ed., CRC Press, Boca Raton, FL, 2016 | DOI | MR | Zbl
[21] Gangolli R., “On the Plancherel formula and the Paley–Wiener theorem for spherical functions on semisimple Lie groups”, Ann. of Math., 93 (1971), 150–165 | DOI | MR | Zbl
[22] Garidi T., What is mass in de Sitterian physics?, arXiv: hep-th/0309104
[23] Garidi T., Huguet E., Renaud J., “de Sitter waves and the zero curvature limit”, Phys. Rev. D, 67 (2003), 124028, 5 pp., arXiv: gr-qc/0304031 | DOI | MR
[24] Gazeau J. P., Novello M., “The question of mass in (anti-) de Sitter spacetimes”, J. Phys. A: Math. Theor., 41 (2008), 304008, 14 pp. | DOI | MR | Zbl
[25] Gel'fand I. M., Graev M. I., Vilenkin N. Ya., Generalized functions, v. 5, Integral geometry and representation theory, Academic Press, New York–London, 1966 | MR | Zbl
[26] Haag R., “Quantum field theories with composite particles and asymptotic conditions”, Phys. Rev., 112 (1958), 669–673 | DOI | MR | Zbl
[27] Hannabuss K. C., “The localizability of particles in de Sitter space”, Proc. Cambridge Philos. Soc., 70 (1971), 283–302 | DOI | MR | Zbl
[28] Harish-Chandra, “Spherical functions on a semisimple Lie group. I”, Amer. J. Math., 80 (1958), 241–310 | DOI | MR | Zbl
[29] Harish-Chandra, “Spherical functions on a semisimple Lie group. II”, Amer. J. Math., 80 (1958), 553–613 | DOI | MR | Zbl
[30] Hawking S. W., “Particle creation by black holes”, Comm. Math. Phys., 43 (1975), 199–220 | DOI | MR | Zbl
[31] Helgason S., “An analogue of the Paley–Wiener theorem for the Fourier transform on certain symmetric spaces”, Math. Ann., 165 (1966), 297–308 | DOI | MR | Zbl
[32] Helgason S., “Lie groups and symmetric spaces”, Battelle Rencontres — 1967 Lectures in Mathematics and Physics, eds. C. M. DeWitt, J.A. Wheeler, W.A. Benjamin, New York, 1968, 1–71 | MR
[33] Helgason S., Groups and geometric analysis: integral geometry, invariant differential operators, and spherical functions, Mathematical Surveys and Monographs, 83, Amer. Math. Soc., Providence, RI, 2000 | DOI | MR | Zbl
[34] Hepp K., “On the connection between the LSZ and Wightman quantum field theory”, Comm. Math. Phys., 1 (1965), 95–111 | DOI | MR | Zbl
[35] Hepp K., “On the connection between Wightman and LSZ quantum field theory”, Lecture in Theoretical Physics: Axiomatic Field Theory, Proceedings of the 8th Brandeis Summer Institute in Theoretical Physics, Gordon and Breach, New York, 1965, 135–240 | MR
[36] Hilgert J., Neeb K. H., Structure and geometry of Lie groups, Springer Monographs in Mathematics, Springer, New York, 2012 | DOI | MR | Zbl
[37] Inonu E., Wigner E. P., “On the contraction of groups and their representations”, Proc. Nat. Acad. Sci. USA, 39 (1953), 510–524 | DOI | MR | Zbl
[38] Joung E., Mourad J., Parentani R., “Group theoretical approach to quantum fields in de Sitter space. I The principal series”, J. High Energy Phys., 2006:8 (2006), 082, 36 pp., arXiv: hep-th/0606119 | DOI | MR
[39] Joung E., Mourad J., Parentani R., “Group theoretical approach to quantum fields in de Sitter space. II The complementary and discrete series”, J. High Energy Phys., 2007:9 (2007), 030, 40 pp., arXiv: 0707.2907 | DOI | MR
[40] Limić N., Niederle J., Ra̧czka R., “Continuous degenerate representations of noncompact rotation groups. II”, J. Math. Phys., 7 (1966), 2026–2035 | DOI | MR | Zbl
[41] Limić N., Niederle J., Ra̧czka R., “Eigenfunction expansions associated with the second-order invariant operator on hyperboloids and cones. III”, J. Math. Phys., 8 (1967), 1079–1093 | DOI | MR | Zbl
[42] Marolf D., Morrison I. A., Srednicki M., “Perturbative $S$-matrix for massive scalar fields in global de Sitter space”, Classical Quantum Gravity, 30 (2013), 155023, 42 pp., arXiv: 1209.6039 | DOI | MR | Zbl
[43] Mickelsson J., Niederle J., “Contractions of representations of de Sitter groups”, Comm. Math. Phys., 27 (1972), 167–180 | DOI | MR | Zbl
[44] Mizony M., “Semi-groupes de causalité et formalisme hilbertien de la mécanique quantique”, Publ. Dép. Math. (Lyon), 1984, no. 3B, 47–64 | MR
[45] Molchanov V. F., “Harmonic analysis on a hyperboloid of one sheet”, Sov. Math. Dokl., 7 (1966), 1553–1556 | MR | Zbl
[46] O'Neill B., Semi-Riemannian geometry with applications to relativity, Pure and Applied Mathematics, 103, Academic Press, Inc., New York, 1983 | MR | Zbl
[47] Primet G., “Contractions de groupes de Lie semi-simples sur le groupe de Poincaré généralisé”, Publ. Dép. Math. (Lyon), 1983, no. 6D, 1–69 | MR
[48] Ra̧czka R., Limić N., Niederle J., “Discrete degenerate representations of noncompact rotation groups. I”, J. Math. Phys., 7 (1966), 1861–1876 | DOI | MR
[49] Ruelle D., “On the asymptotic condition in quantum field theory”, Helv. Phys. Acta, 35 (1962), 147–163 | MR | Zbl
[50] Schrödinger E., Expanding universes, Cambridge University Press, Cambridge, 1956 | MR | Zbl
[51] Stein E. M., Shakarchi R., Functional analysis: introduction to further topics in analysis, Princeton Lectures in Analysis, 4, Princeton University Press, Princeton, NJ, 2011 | DOI | MR | Zbl
[52] Stein E. M., Weiss G., Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, 32, Princeton University Press, Princeton, N.J., 1971 | MR
[53] Strichartz R. S., “Harmonic analysis on hyperboloids”, J. Funct. Anal., 12 (1973), 341–383 | DOI | MR | Zbl
[54] Takahashi R., “Sur les représentations unitaires des groupes de Lorentz généralisés”, Bull. Soc. Math. France, 91 (1963), 289–433 | DOI | MR | Zbl
[55] Thieleker E. A., “The unitary representations of the generalized Lorentz groups”, Trans. Amer. Math. Soc., 199 (1974), 327–367 | DOI | MR | Zbl
[56] Unruh W. G., “Notes on black-hole evaporation”, Phys. Rev. D, 14 (1976), 870–892 | DOI
[57] Vilenkin N. Ja., Klimyk A. U., Representation of Lie groups and special functions, v. 2, Mathematics and its Applications (Soviet Series), 74, Class I representations, special functions, and integral transforms, Kluwer Academic Publishers Group, Dordrecht, 1993 | DOI | MR | Zbl
[58] Warner G., Harmonic analysis on semi-simple Lie groups II, Die Grundlehren der mathematischen Wissenschaften, 189, Springer-Verlag, New York–Heidelberg, 1972 | DOI | MR | Zbl
[59] Wigner E., “On unitary representations of the inhomogeneous Lorentz group”, Ann. of Math., 40 (1939), 149–204 | DOI | MR