Third Homology of some Sporadic Finite Groups
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We compute the integral third homology of most of the sporadic finite simple groups and of their central extensions.
Keywords: sporadic groups, group cohomology.
@article{SIGMA_2019_15_a58,
     author = {Theo Johnson-Freyd and David Treumann},
     title = {Third {Homology} of some {Sporadic} {Finite} {Groups}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a58/}
}
TY  - JOUR
AU  - Theo Johnson-Freyd
AU  - David Treumann
TI  - Third Homology of some Sporadic Finite Groups
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a58/
LA  - en
ID  - SIGMA_2019_15_a58
ER  - 
%0 Journal Article
%A Theo Johnson-Freyd
%A David Treumann
%T Third Homology of some Sporadic Finite Groups
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a58/
%G en
%F SIGMA_2019_15_a58
Theo Johnson-Freyd; David Treumann. Third Homology of some Sporadic Finite Groups. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a58/

[1] Adem A., Milgram R. J., “The subgroup structure and mod $2$ cohomology of O'Nan's sporadic simple group”, J. Algebra, 176 (1995), 288–315 | DOI | MR | Zbl

[2] Adem A., Milgram R. J., Cohomology of finite groups, Grundlehren der Mathematischen Wissenschaften, 309, 2nd ed., Springer-Verlag, Berlin, 2004 | DOI | MR | Zbl

[3] Cartan H., Eilenberg S., Homological algebra, Princeton University Press, Princeton, N. J., 1956 | MR | Zbl

[4] Cheng M. C. N., de Lange P., Whalen D. P. Z., “Generalised umbral moonshine”, SIGMA, 15 (2019), 014, 27 pp., arXiv: 1608.07835 | DOI | MR | Zbl

[5] Cohen A. M., Wales D. B., “Finite subgroups of $F_4(C)$ and $E_6(C)$”, Proc. London Math. Soc., 74 (1997), 105–150 | DOI | MR | Zbl

[6] Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A., Atlas of finite groups: maximal subgroups and ordinary characters for simple groups, with computational assistance from J. G. Thackray, Oxford University Press, Eynsham, 1985 | MR | Zbl

[7] Conway J. H., Norton S. P., “Monstrous moonshine”, Bull. London Math. Soc., 11 (1979), 308–339 | DOI | MR | Zbl

[8] Curtis M., Wiederhold A., Williams B., “Normalizers of maximal tori”, Localization in Group Theory and Homotopy Theory, and Related Topics, Sympos. (Battelle Seattle Res. Center, Seattle, Wash., 1974), Lecture Notes in Math., 418, Springer, Berlin, 1974, 31–47 | DOI | MR

[9] Dempwolff U., “On extensions of an elementary abelian group of order $2^{5}$ by ${\rm GL}(5,2)$”, Rend. Sem. Mat. Univ. Padova, 48 (1972), 359–364 | MR

[10] Dempwolff U., “On the second cohomology of ${\rm GL}(n,2)$”, J. Austral. Math. Soc., 16 (1973), 207–209 | DOI | MR | Zbl

[11] Duncan J. F., “Super-moonshine for Conway's largest sporadic group”, Duke Math. J., 139 (2007), 255–315, arXiv: math.RT/0502267 | DOI | MR | Zbl

[12] Duncan J. F. R., Vertex operators, and three sporadic groups, Ph.D. Thesis, Yale University, 2006 | MR

[13] Duncan J. F. R., Mertens M. H., Ono K., O'Nan moonshine and arithmetic, arXiv: 1702.03516

[14] Dutour Sikirić M., Ellis G., “Wythoff polytopes and low-dimensional homology of Mathieu groups”, J. Algebra, 322 (2009), 4143–4150, arXiv: 0812.4291 | DOI | MR | Zbl

[15] Frame J. S., “The characters of the Weyl group $E_{8}$”, Computational Problems in Abstract Algebra, Proc. Conf. (Oxford, 1967), Pergamon, Oxford, 1970, 111–130 | MR

[16] Gaberdiel M. R., Persson D., Ronellenfitsch H., Volpato R., “Generalized Mathieu Moonshine”, Commun. Number Theory Phys., 7 (2013), 145–223, arXiv: 1211.7074 | DOI | MR | Zbl

[17] Gannon T., “Much ado about Mathieu”, Adv. Math., 301 (2016), 322–358, arXiv: 1211.5531 | DOI | MR | Zbl

[18] Ganter N., “Hecke operators in equivariant elliptic cohomology and generalized Moonshine”, Groups and Symmetries, CRM Proc. Lecture Notes, 47, Amer. Math. Soc., Providence, RI, 2009, 173–209, arXiv: 0706.2898 | DOI | MR | Zbl

[19] Green D. J., “On the cohomology of the sporadic simple group $J_4$”, Math. Proc. Cambridge Philos. Soc., 113 (1993), 253–266 | DOI | MR | Zbl

[20] Griess R. L. Jr, Schur multipliers of the known finite simple groups, Ph.D. Thesis, The University of Chicago, 1971 | MR

[21] Griess R. L. Jr, “Automorphisms of extra special groups and nonvanishing degree $2$ cohomology”, Pacific J. Math., 48 (1973), 403–422 | DOI | MR | Zbl

[22] Griess R. L. Jr, “On a subgroup of order $2^{15}\mid GL(5,2)\mid $ in $E_{8}(C),$ the Dempwolff group and ${\rm Aut}(D_{8}\circ D_{8}\circ D_{8})$”, J. Algebra, 40 (1976), 271–279 | DOI | MR | Zbl

[23] Grodal J., Low dimensional homology of finite groups of Lie type, away from the characteristic, unpublished

[24] Henriques A., “The classification of chiral WZW models by $H^4_+(BG,{\mathbb Z})$”, Lie Algebras, Vertex Operator Algebras, and Related Topics, Contemp. Math., 695, Amer. Math. Soc., Providence, RI, 2017, 99–121, arXiv: 1602.02968 | DOI | MR | Zbl

[25] Hochschild G., Serre J.-P., “Cohomology of group extensions”, Trans. Amer. Math. Soc., 74 (1953), 110–134 | DOI | MR | Zbl

[26] Ivanov A. A., The Monster group and Majorana involutions, Cambridge Tracts in Mathematics, 176, Cambridge University Press, Cambridge, 2009 | DOI | MR | Zbl

[27] Johnson-Freyd T., “The moonshine anomaly”, Comm. Math. Phys., 365 (2019), 943–970, arXiv: 1707.08388 | DOI | MR | Zbl

[28] Johnson-Freyd T., Treumann D., “$\mathrm{H}^4(\mathrm{Co}_0;\mathbf{Z}) = \mathbf{Z}/24$”, Int. Math. Res. Not. (to appear) , arXiv: 1707.07587 | DOI

[29] Lyons R., “Evidence for a new finite simple group”, J. Algebra, 20 (1972), 540–569 | DOI | MR | Zbl

[30] Mason G., “Reed–Muller codes, the fourth cohomology group of a finite group, and the $\beta$-invariant”, J. Algebra, 312 (2007), 218–227 | DOI | MR | Zbl

[31] Milgram R. J., “On the geometry and cohomology of the simple groups $G_2(q)$ and $^3\!D_4(q)$. II”, Group Representations: Cohomology, Group Actions and Topology (Seattle, WA, 1996), Proc. Sympos. Pure Math., 63, Amer. Math. Soc., Providence, RI, 1998, 397–418 | DOI | MR | Zbl

[32] Milgram R. J., “The cohomology of the Mathieu group $M_{23}$”, J. Group Theory, 3 (2000), 7–26 | DOI | MR | Zbl

[33] Serre J.-P., “Homologie singulière des espaces fibrés. Applications”, Ann. of Math., 54 (1951), 425–505 | DOI | MR | Zbl

[34] Smith P. E., “A simple subgroup of $M?$ and $E_{8}(3)$”, Bull. London Math. Soc., 8 (1976), 161–165 | DOI | MR | Zbl

[35] Soicher L. H., “Presentations for Conway's group ${\rm Co}_1$”, Math. Proc. Cambridge Philos. Soc., 102 (1987), 1–3 | DOI | MR | Zbl

[36] Thomas C. B., Characteristic classes and the cohomology of finite groups, Cambridge Studies in Advanced Mathematics, 9, Cambridge University Press, Cambridge, 1987 | DOI | MR

[37] Thomas C. B., “Characteristic classes and $2$-modular representations of some sporadic simple groups”, Algebraic Topology (Evanston, IL, 1988), Contemp. Math., 96, Amer. Math. Soc., Providence, RI, 1989, 303–318 | DOI | MR

[38] Thomas C. B., “Characteristic classes and $2$-modular representations for some sporadic simple groups. II”, Algebraic Topology (Poznań, 1989), Lecture Notes in Math., 1474, Springer, Berlin, 1991, 371–381 | DOI | MR

[39] Thompson J. G., “A conjugacy theorem for $E_{8}$”, J. Algebra, 38 (1976), 525–530 | DOI | MR | Zbl

[40] Tits J., “Normalisateurs de tores. I Groupes de Coxeter étendus”, J. Algebra, 4 (1966), 96–116 | DOI | MR | Zbl

[41] Weibel C. A., An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, 38, Cambridge University Press, Cambridge, 1994 | DOI | MR | Zbl

[42] Wilson R., Walsh P., Tripp J., Suleiman I., Parker R., Norton S., Nickerson S., Linton S., Bray J., Abbott R., ATLAS of finite group representations, Version 3, http://brauer.maths.qmul.ac.uk/Atlas/v3/

[43] Wilson R. A., “The complex Leech lattice and maximal subgroups of the Suzuki group”, J. Algebra, 84 (1983), 151–188 | DOI | MR | Zbl

[44] Wilson R. A., “Maximal subgroups of sporadic groups”, Finite Simple Groups: Thirty Years of the Atlas and Beyond, Contemp. Math., 694, Amer. Math. Soc., Providence, RI, 2017, 57–72, arXiv: 1701.02095 | DOI | MR