@article{SIGMA_2019_15_a57,
author = {Moulay A. Barkatou and Renat R. Gontsov},
title = {Linear {Differential} {Systems} with {Small} {Coefficients:} {Various} {Types} of {Solvability} and their {Verification}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a57/}
}
TY - JOUR AU - Moulay A. Barkatou AU - Renat R. Gontsov TI - Linear Differential Systems with Small Coefficients: Various Types of Solvability and their Verification JO - Symmetry, integrability and geometry: methods and applications PY - 2019 VL - 15 UR - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a57/ LA - en ID - SIGMA_2019_15_a57 ER -
%0 Journal Article %A Moulay A. Barkatou %A Renat R. Gontsov %T Linear Differential Systems with Small Coefficients: Various Types of Solvability and their Verification %J Symmetry, integrability and geometry: methods and applications %D 2019 %V 15 %U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a57/ %G en %F SIGMA_2019_15_a57
Moulay A. Barkatou; Renat R. Gontsov. Linear Differential Systems with Small Coefficients: Various Types of Solvability and their Verification. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a57/
[1] Barkatou M. A., “An algorithm to compute the exponential part of a formal fundamental matrix solution of a linear differential system”, Appl. Algebra Engrg. Comm. Comput., 8 (1997), 1–23 | DOI | MR | Zbl
[2] Barkatou M. A., Cluzeau T., On simultaneous triangularization of a set of matrices, in preparation
[3] Barkatou M. A., Cluzeau T., Weil J. A., Di Vizio L., “Computing the Lie algebra of the differential Galois group of a linear differential system”, Proceedings of the 2016 ACM International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2016, 63–70 | DOI | MR | Zbl
[4] Barkatou M. A., Pflügel E., ISOLDE: a Maple package for solving systems of linear ODEs, , 1996 http://sourceforge.net/projects/isolde/ | Zbl
[5] Compoint E., Singer M. F., “Computing Galois groups of completely reducible differential equations”, J. Symbolic Comput., 28 (1999), 473–494 | DOI | MR | Zbl
[6] Feng R., “Hrushovski's algorithm for computing the Galois group of a linear differential equation”, Adv. in Appl. Math., 65 (2015), 1–37, arXiv: 1312.5029 | DOI | MR | Zbl
[7] Gontsov R. R., “On the dimension of the subspace of Liouvillian solutions of a Fuchsian system”, Math. Notes, 102 (2017), 149–155 | DOI | MR | Zbl
[8] Gontsov R. R., Vyugin I. V., “Solvability of linear differential systems with small exponents in the Liouvillian sense”, Arnold Math. J., 1 (2015), 445–471 | DOI | MR | Zbl
[9] Hrushovski E., “Computing the Galois group of a linear differential equation”, Differential Galois Theory (Bȩedlewo, 2001), Banach Center Publ., 58, Polish Acad. Sci. Inst. Math., Warsaw, 2002, 97–138 | DOI | MR | Zbl
[10] Humphreys J. E., Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, 9, Springer-Verlag, New York–Berlin, 1972 | DOI | MR | Zbl
[11] Kaplansky I., An introduction to differential algebra, Actualités Sci. Ind., 1251, Hermann, Paris, 1957 | MR | Zbl
[12] Khovanskii A. G., “On solvability and unsolvability of equations in explicit form”, Russian Math. Surveys, 59 (2004), 661–736 | DOI | MR
[13] Khovanskii A. G., Topological Galois theory: solvability and unsolvability of equations in finite terms, Springer Monographs in Mathematics, Springer, Heidelberg, 2014 | DOI | MR | Zbl
[14] Kimura T., “On Riemann's equations which are solvable by quadratures”, Funkcial. Ekvac., 12 (1970), 269–281 | MR
[15] Kolchin E. R., “Algebraic matric groups and the Picard–Vessiot theory of homogeneous linear ordinary differential equations”, Ann. of Math., 49 (1948), 1–42 | DOI | MR | Zbl
[16] Maciejewski A., Moulin-Ollagnier J., Nowicki A., “Simple quadratic derivations in two variables”, Comm. Algebra, 29 (2001), 5095–5113 | DOI | MR | Zbl
[17] Morales Ruiz J. J., Differential Galois theory and non-integrability of Hamiltonian systems, Progress in Mathematics, 179, Birkhäuser Verlag, Basel, 1999 | DOI | MR | Zbl
[18] van der Hoeven J., “Around the numeric-symbolic computation of differential Galois groups”, J. Symbolic Comput., 42 (2007), 236–264 | DOI | MR | Zbl
[19] Vidunas R., “Differential equations of order two with one singular point”, J. Symbolic Comput., 28 (1999), 495–520 | DOI | MR | Zbl
[20] Vyugin I. V., Gontsov R. R., “On the question of solubility of Fuchsian systems by quadratures”, Russian Math. Surveys, 67 (2012), 585–587 | DOI | MR | Zbl
[21] Wasow W., Asymptotic expansions for ordinary differential equations, Pure and Applied Mathematics, 14, Interscience Publishers John Wiley Sons, Inc., New York–London–Sydney, 1965 | MR | Zbl
[22] Żoładek H., “Polynomial Riccati equations with algebraic solutions”, Differential Galois Theory (Bȩdlewo, 2001), Banach Center Publ., 58, Polish Acad. Sci. Inst. Math., Warsaw, 2002, 219–231 | DOI | MR
[23] Żoładek H., The monodromy group, Monografie Matematyczne, 67, Birkhäuser Verlag, Basel, 2006 | DOI | MR