@article{SIGMA_2019_15_a56,
author = {Eric Bahuaud and Rafe Mazzeo and Eric Woolgar},
title = {Ricci {Flow} and {Volume} {Renormalizability}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a56/}
}
Eric Bahuaud; Rafe Mazzeo; Eric Woolgar. Ricci Flow and Volume Renormalizability. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a56/
[1] Albin P., “Renormalizing curvature integrals on Poincaré–Einstein manifolds”, Adv. Math., 221 (2009), 140–169, arXiv: math.DG/0504161 | DOI | MR | Zbl
[2] Ammar M., Polyhomogénéité des métriques compatibles avec une structure de Lie à l'infini le long du flot de Ricci, Ph.D. Thesis, Université du Québec à Montréal, 2019, arXiv: 1907.03917
[3] Bahuaud E., “Ricci flow of conformally compact metrics”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 813–835, arXiv: 1011.2999 | DOI | MR | Zbl
[4] Bahuaud E., Mazzeo R., Woolgar E., “Renormalized volume and the evolution of APEs”, Geom. Flows, 1 (2015), 126–138, arXiv: 1307.4788 | DOI | MR | Zbl
[5] Bahuaud E., Woolgar E., “Asymptotically hyperbolic normalized Ricci flow and rotational symmetry”, Comm. Anal. Geom., 26 (2018), 1009–1045, arXiv: 1506.06806 | DOI | MR | Zbl
[6] Balehowsky T., Woolgar E., “The Ricci flow of asymptotically hyperbolic mass and applications”, J. Math. Phys., 53 (2012), 072501, 15 pp., arXiv: 1110.0765 | DOI | MR | Zbl
[7] Bamler R. H., “Stability of symmetric spaces of noncompact type under Ricci flow”, Geom. Funct. Anal., 25 (2015), 342–416, arXiv: 1011.4267 | DOI | MR | Zbl
[8] Besse A. L., Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 10, Springer-Verlag, Berlin, 1987 | DOI | MR | Zbl
[9] Chen B.-L., Zhu X.-P., “Uniqueness of the Ricci flow on complete noncompact manifolds”, J. Differential Geom., 74 (2006), 119–154, arXiv: math.DG/0505447 | DOI | MR | Zbl
[10] Chruściel P. T., Delay E., Lee J. M., Skinner D. N., “Boundary regularity of conformally compact Einstein metrics”, J. Differential Geom., 69 (2005), 111–136, arXiv: math.DG/0401386 | DOI | MR | Zbl
[11] Djadli Z., Guillarmou C., Herzlich M., Opérateurs géométriques, invariants conformes et variétés asymptotiquement hyperboliques, Panoramas et Synthèses, 26, Société Mathématique de France, Paris, 2008 | MR
[12] Fefferman C., Graham C. R., The ambient metric, Annals of Mathematics Studies, 178, Princeton University Press, Princeton, NJ, 2012 | MR | Zbl
[13] Graham C. R., “Volume and area renormalizations for conformally compact Einstein metrics”, Rend. Circ. Mat. Palermo (2) Suppl., 2000, 31–42, arXiv: math.DG/9909042 | MR | Zbl
[14] Graham C. R., Lee J. M., “Einstein metrics with prescribed conformal infinity on the ball”, Adv. Math., 87 (1991), 186–225 | DOI | MR | Zbl
[15] Guillarmou C., “Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds”, Duke Math. J., 129 (2005), 1–37, arXiv: math.SP/0311424 | DOI | MR | Zbl
[16] Mazzeo R. R., Melrose R. B., “Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature”, J. Funct. Anal., 75 (1987), 260–310 | DOI | MR | Zbl
[17] Qing J., Shi Y., Wu J., “Normalized {R}icci flows and conformally compact Einstein metrics”, Calc. Var. Partial Differential Equations, 46 (2013), 183–211, arXiv: 1106.0372 | DOI | MR | Zbl
[18] Rochon F., “Polyhomogénéité des métriques asymptotiquement hyperboliques complexes le long du flot de Ricci”, J. Geom. Anal., 25 (2015), 2103–2132, arXiv: 1305.5457 | DOI | MR | Zbl
[19] Schnürer O. C., Schulze F., Simon M., “Stability of hyperbolic space under Ricci flow”, Comm. Anal. Geom., 19 (2011), 1023–1047, arXiv: 1003.2107 | DOI | MR | Zbl
[20] Shi W.-X., “Ricci deformation of the metric on complete noncompact Riemannian manifolds”, J. Differential Geom., 30 (1989), 303–394 | DOI | MR | Zbl
[21] Vasy A., “Microlocal analysis of asymptotically hyperbolic and Kerr–de Sitter spaces (with an appendix by Semyon Dyatlov)”, Invent. Math., 194 (2013), 381–513, arXiv: 1012.4391 | DOI | MR | Zbl