Mots-clés : Lie algebras
@article{SIGMA_2019_15_a55,
author = {Konrad Lompert and Andriy Panasyuk},
title = {Invariant {Nijenhuis} {Tensors} and {Integrable} {Geodesic} {Flows}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a55/}
}
Konrad Lompert; Andriy Panasyuk. Invariant Nijenhuis Tensors and Integrable Geodesic Flows. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a55/
[1] Besse A. L., Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 10, Springer-Verlag, Berlin, 1987 | DOI | MR | Zbl
[2] Bolsinov A., “Compatible Poisson brackets on Lie algebras and the completeness of families of functions in involution”, Math. USSR Izv., 38 (1992), 69–90 | DOI | MR
[3] Bolsinov A., “Complete commutative subalgebras in polynomial Poisson algebras: a proof of the Mischenko–Fomenko conjecture”, Theor. Appl. Mech., 43 (2016), 145–168, arXiv: 1206.3882 | DOI | MR
[4] Bolsinov A., Izosimov A., “Singularities of bi-Hamiltonian systems”, Comm. Math. Phys., 331 (2014), 507–543, arXiv: 1203.3419 | DOI | MR | Zbl
[5] Bolsinov A., Jovanović B., “Complete involutive algebras of functions on cotangent bundles of homogeneous spaces”, Math. Z., 246 (2004), 213–236 | DOI | MR | Zbl
[6] Bolsinov A., Jovanović B., “Integrable geodesic flows on Riemannian manifolds: construction and obstructions”, Contemporary Geometry and Related Topics, eds. N. Bokan, M. Djoric, Z. Rakic, A.T. Fomenko, J. Wess, World Sci. Publ., River Edge, NJ, 2004, 57–103, arXiv: math-ph/0307015 | DOI | MR | Zbl
[7] Dragović V., Gajić B., Jovanović B., “Singular Manakov flows and geodesic flows on homogeneous spaces of ${\rm SO}(N)$”, Transform. Groups, 14 (2009), 513–530, arXiv: 0901.2444 | DOI | MR | Zbl
[8] Duistermaat J. J., Kolk J. A. C., Lie groups, Universitext, Springer-Verlag, Berlin, 2000 | DOI | MR | Zbl
[9] Golubchik I. Z., Sokolov V. V., “One more kind of the classical Yang–Baxter equation”, Funct. Anal. Appl., 34 (2000), 296–298 | DOI | MR | Zbl
[10] Gorbatsevich V. V., Onishchik A. L., Vinberg E. B., Lie groups and Lie algebras, v. III, Encyclopaedia of Mathematical Sciences, 41, Structure of Lie groups and Lie algebras, Springer-Verlag, Berlin–Heidelberg, 1994 | DOI | MR | Zbl
[11] Helgason S., Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, 34, Amer. Math. Soc., Providence, RI, 2001 | DOI | MR | Zbl
[12] Jovanović B., “Integrability of invariant geodesic flows on $n$-symmetric spaces”, Ann. Global Anal. Geom., 38 (2010), 305–316, arXiv: 1006.3693 | DOI | MR | Zbl
[13] Kosmann-Schwarzbach Y., Magri F., Poisson–Nijenhuis structures, Ann. Inst. H. Poincaré Phys. Théor., 53 (1990), 35–81 | MR | Zbl
[14] Magri F., Casati P., Falqui G., Pedroni M., “Eight lectures on integrable systems”, Integrability of Nonlinear Systems (Pondicherry, 1996), Lecture Notes in Phys., 495, Springer, Berlin, 1997, 256–296 | DOI | MR | Zbl
[15] Mishchenko A. S., “Integration of geodesic flows on symmetric spaces”, Math. Notes, 31 (1982), 132–134 | DOI | MR | Zbl
[16] Mykytyuk I. V., “Integrability of geodesic flows for metrics on suborbits of the adjoint orbits of compact groups”, Transform. Groups, 21 (2016), 531–553, arXiv: 1402.6526 | DOI | MR | Zbl
[17] Mykytyuk I. V., Panasyuk A., “Bi-Poisson structures and integrability of geodesic flow on homogeneous spaces”, Transform. Groups, 9 (2004), 289–308 | DOI | MR | Zbl
[18] Mykytyuk I. V., Panasyuk A., Dirac brackets and reduction of invariant bi-Poisson structures, arXiv: 1605.03382
[19] Odesskii A. V., Sokolov V. V., “Integrable matrix equations related to pairs of compatible associative algebras”, J. Phys. A: Math. Gen., 39 (2006), 12447–12456, arXiv: math.QA/0604574 | DOI | MR | Zbl
[20] Onishchik A. L., “Inclusion relations between transitive compact transformation groups”, Tr. Mosk. Mat. Obs., 11, 1962, 199–242 | MR | Zbl
[21] Onishchik A. L., “Decompositions of reductive Lie groups”, Math. USSR Sb., 9 (1969), 515–554 | DOI | MR
[22] Ortega J.-P., Ratiu T. S., Momentum maps and Hamiltonian reduction, Progress in Mathematics, 222, Birkhäuser Boston, Inc., Boston, MA, 2004 | DOI | MR | Zbl
[23] Panasyuk A., “Projections of Jordan bi-Poisson structures that are Kronecker, diagonal actions, and the classical Gaudin systems”, J. Geom. Phys., 47 (2003), 379–397, arXiv: math.DG/0209260 | DOI | MR | Zbl
[24] Panasyuk A., “Algebraic {N}ijenhuis operators and Kronecker Poisson pencils”, Differential Geom. Appl., 24 (2006), 482–491, arXiv: math.DG/0504337 | DOI | MR | Zbl
[25] Panasyuk A., “Reduction by stages and the Raïs-type formula for the index of a Lie algebra with an ideal”, Ann. Global Anal. Geom., 33 (2008), 1–10 | DOI | MR | Zbl
[26] Panasyuk A., “Bi-Hamiltonian structures with symmetries, Lie pencils and integrable systems”, J. Phys. A: Math. Theor., 42 (2009), 165205, 20 pp. | DOI | MR | Zbl
[27] Panasyuk A., “Compatible Lie brackets: towards a classification”, J. Lie Theory, 24 (2014), 561–623 | MR | Zbl
[28] Raïs M., “L'indice des produits semi-directs $E\underset \rho\to\times{\mathfrak g}$”, C. R. Acad. Sci. Paris Sér. A-B, 287 (1978), A195–A197 | MR
[29] Sadetov S. T., “A proof of the Mishchenko–Fomenko conjecture”, Dokl. Math., 397 (2004), 751–754 | MR | Zbl
[30] Thimm A., “Integrable geodesic flows on homogeneous spaces”, Ergodic Theory Dynamical Systems, 1 (1981), 495–517 | DOI | MR | Zbl
[31] Trofimov V. V., Fomenko A. T., Algebra and geometry of integrable Hamiltonian differential equations, Faktorial, M., 1995 | MR | Zbl
[32] Turiel F.-J., “Structures bihamiltoniennes sur le fibré cotangent”, C. R. Acad. Sci. Paris Sér. I Math., 315 (1992), 1085–1088 | MR | Zbl
[33] Whitney H., Bruhat F., “Quelques propriétés fondamentales des ensembles analytiques-réels”, Comment. Math. Helv., 33 (1959), 132–160 | DOI | MR | Zbl