Invariant Nijenhuis Tensors and Integrable Geodesic Flows
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study invariant Nijenhuis $(1,1)$-tensors on a homogeneous space $G/K$ of a reductive Lie group $G$ from the point of view of integrability of a Hamiltonian system of differential equations with the $G$-invariant Hamiltonian function on the cotangent bundle $T^*(G/K)$. Such a tensor induces an invariant Poisson tensor $\Pi_1$ on $T^*(G/K)$, which is Poisson compatible with the canonical Poisson tensor $\Pi_{T^*(G/K)}$. This Poisson pair can be reduced to the space of $G$-invariant functions on $T^*(G/K)$ and produces a family of Poisson commuting $G$-invariant functions. We give, in Lie algebraic terms, necessary and sufficient conditions of the completeness of this family. As an application we prove Liouville integrability in the class of analytic integrals polynomial in momenta of the geodesic flow on two series of homogeneous spaces $G/K$ of compact Lie groups $G$ for two kinds of metrics: the normal metric and new classes of metrics related to decomposition of $G$ to two subgroups $G=G_1\cdot G_2$, where $G/G_i$ are symmetric spaces, $K=G_1\cap G_2$.
Keywords: bi-Hamiltonian structures, integrable systems, homogeneous spaces, Liouville integrability.
Mots-clés : Lie algebras
@article{SIGMA_2019_15_a55,
     author = {Konrad Lompert and Andriy Panasyuk},
     title = {Invariant {Nijenhuis} {Tensors} and {Integrable} {Geodesic} {Flows}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a55/}
}
TY  - JOUR
AU  - Konrad Lompert
AU  - Andriy Panasyuk
TI  - Invariant Nijenhuis Tensors and Integrable Geodesic Flows
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a55/
LA  - en
ID  - SIGMA_2019_15_a55
ER  - 
%0 Journal Article
%A Konrad Lompert
%A Andriy Panasyuk
%T Invariant Nijenhuis Tensors and Integrable Geodesic Flows
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a55/
%G en
%F SIGMA_2019_15_a55
Konrad Lompert; Andriy Panasyuk. Invariant Nijenhuis Tensors and Integrable Geodesic Flows. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a55/

[1] Besse A. L., Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 10, Springer-Verlag, Berlin, 1987 | DOI | MR | Zbl

[2] Bolsinov A., “Compatible Poisson brackets on Lie algebras and the completeness of families of functions in involution”, Math. USSR Izv., 38 (1992), 69–90 | DOI | MR

[3] Bolsinov A., “Complete commutative subalgebras in polynomial Poisson algebras: a proof of the Mischenko–Fomenko conjecture”, Theor. Appl. Mech., 43 (2016), 145–168, arXiv: 1206.3882 | DOI | MR

[4] Bolsinov A., Izosimov A., “Singularities of bi-Hamiltonian systems”, Comm. Math. Phys., 331 (2014), 507–543, arXiv: 1203.3419 | DOI | MR | Zbl

[5] Bolsinov A., Jovanović B., “Complete involutive algebras of functions on cotangent bundles of homogeneous spaces”, Math. Z., 246 (2004), 213–236 | DOI | MR | Zbl

[6] Bolsinov A., Jovanović B., “Integrable geodesic flows on Riemannian manifolds: construction and obstructions”, Contemporary Geometry and Related Topics, eds. N. Bokan, M. Djoric, Z. Rakic, A.T. Fomenko, J. Wess, World Sci. Publ., River Edge, NJ, 2004, 57–103, arXiv: math-ph/0307015 | DOI | MR | Zbl

[7] Dragović V., Gajić B., Jovanović B., “Singular Manakov flows and geodesic flows on homogeneous spaces of ${\rm SO}(N)$”, Transform. Groups, 14 (2009), 513–530, arXiv: 0901.2444 | DOI | MR | Zbl

[8] Duistermaat J. J., Kolk J. A. C., Lie groups, Universitext, Springer-Verlag, Berlin, 2000 | DOI | MR | Zbl

[9] Golubchik I. Z., Sokolov V. V., “One more kind of the classical Yang–Baxter equation”, Funct. Anal. Appl., 34 (2000), 296–298 | DOI | MR | Zbl

[10] Gorbatsevich V. V., Onishchik A. L., Vinberg E. B., Lie groups and Lie algebras, v. III, Encyclopaedia of Mathematical Sciences, 41, Structure of Lie groups and Lie algebras, Springer-Verlag, Berlin–Heidelberg, 1994 | DOI | MR | Zbl

[11] Helgason S., Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, 34, Amer. Math. Soc., Providence, RI, 2001 | DOI | MR | Zbl

[12] Jovanović B., “Integrability of invariant geodesic flows on $n$-symmetric spaces”, Ann. Global Anal. Geom., 38 (2010), 305–316, arXiv: 1006.3693 | DOI | MR | Zbl

[13] Kosmann-Schwarzbach Y., Magri F., Poisson–Nijenhuis structures, Ann. Inst. H. Poincaré Phys. Théor., 53 (1990), 35–81 | MR | Zbl

[14] Magri F., Casati P., Falqui G., Pedroni M., “Eight lectures on integrable systems”, Integrability of Nonlinear Systems (Pondicherry, 1996), Lecture Notes in Phys., 495, Springer, Berlin, 1997, 256–296 | DOI | MR | Zbl

[15] Mishchenko A. S., “Integration of geodesic flows on symmetric spaces”, Math. Notes, 31 (1982), 132–134 | DOI | MR | Zbl

[16] Mykytyuk I. V., “Integrability of geodesic flows for metrics on suborbits of the adjoint orbits of compact groups”, Transform. Groups, 21 (2016), 531–553, arXiv: 1402.6526 | DOI | MR | Zbl

[17] Mykytyuk I. V., Panasyuk A., “Bi-Poisson structures and integrability of geodesic flow on homogeneous spaces”, Transform. Groups, 9 (2004), 289–308 | DOI | MR | Zbl

[18] Mykytyuk I. V., Panasyuk A., Dirac brackets and reduction of invariant bi-Poisson structures, arXiv: 1605.03382

[19] Odesskii A. V., Sokolov V. V., “Integrable matrix equations related to pairs of compatible associative algebras”, J. Phys. A: Math. Gen., 39 (2006), 12447–12456, arXiv: math.QA/0604574 | DOI | MR | Zbl

[20] Onishchik A. L., “Inclusion relations between transitive compact transformation groups”, Tr. Mosk. Mat. Obs., 11, 1962, 199–242 | MR | Zbl

[21] Onishchik A. L., “Decompositions of reductive Lie groups”, Math. USSR Sb., 9 (1969), 515–554 | DOI | MR

[22] Ortega J.-P., Ratiu T. S., Momentum maps and Hamiltonian reduction, Progress in Mathematics, 222, Birkhäuser Boston, Inc., Boston, MA, 2004 | DOI | MR | Zbl

[23] Panasyuk A., “Projections of Jordan bi-Poisson structures that are Kronecker, diagonal actions, and the classical Gaudin systems”, J. Geom. Phys., 47 (2003), 379–397, arXiv: math.DG/0209260 | DOI | MR | Zbl

[24] Panasyuk A., “Algebraic {N}ijenhuis operators and Kronecker Poisson pencils”, Differential Geom. Appl., 24 (2006), 482–491, arXiv: math.DG/0504337 | DOI | MR | Zbl

[25] Panasyuk A., “Reduction by stages and the Raïs-type formula for the index of a Lie algebra with an ideal”, Ann. Global Anal. Geom., 33 (2008), 1–10 | DOI | MR | Zbl

[26] Panasyuk A., “Bi-Hamiltonian structures with symmetries, Lie pencils and integrable systems”, J. Phys. A: Math. Theor., 42 (2009), 165205, 20 pp. | DOI | MR | Zbl

[27] Panasyuk A., “Compatible Lie brackets: towards a classification”, J. Lie Theory, 24 (2014), 561–623 | MR | Zbl

[28] Raïs M., “L'indice des produits semi-directs $E\underset \rho\to\times{\mathfrak g}$”, C. R. Acad. Sci. Paris Sér. A-B, 287 (1978), A195–A197 | MR

[29] Sadetov S. T., “A proof of the Mishchenko–Fomenko conjecture”, Dokl. Math., 397 (2004), 751–754 | MR | Zbl

[30] Thimm A., “Integrable geodesic flows on homogeneous spaces”, Ergodic Theory Dynamical Systems, 1 (1981), 495–517 | DOI | MR | Zbl

[31] Trofimov V. V., Fomenko A. T., Algebra and geometry of integrable Hamiltonian differential equations, Faktorial, M., 1995 | MR | Zbl

[32] Turiel F.-J., “Structures bihamiltoniennes sur le fibré cotangent”, C. R. Acad. Sci. Paris Sér. I Math., 315 (1992), 1085–1088 | MR | Zbl

[33] Whitney H., Bruhat F., “Quelques propriétés fondamentales des ensembles analytiques-réels”, Comment. Math. Helv., 33 (1959), 132–160 | DOI | MR | Zbl