Differential Galois Theory and Isomonodromic Deformations
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a geometric setting for the differential Galois theory of $G$-invariant connections with parameters. As an application of some classical results on differential algebraic groups and Lie algebra bundles, we see that the Galois group of a connection with parameters with simple structural group $G$ is determined by its isomonodromic deformations. This allows us to compute the Galois groups with parameters of the general Fuchsian special linear system and of Gauss hypergeometric equation.
Keywords: differential Galois theory, hypergeometric equation.
Mots-clés : isomonodromic deformations
@article{SIGMA_2019_15_a54,
     author = {David Bl\'azquez-Sanz and Guy Casale and Juan Sebasti\'an D{\'\i}az Arboleda},
     title = {Differential {Galois} {Theory} and {Isomonodromic} {Deformations}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a54/}
}
TY  - JOUR
AU  - David Blázquez-Sanz
AU  - Guy Casale
AU  - Juan Sebastián Díaz Arboleda
TI  - Differential Galois Theory and Isomonodromic Deformations
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a54/
LA  - en
ID  - SIGMA_2019_15_a54
ER  - 
%0 Journal Article
%A David Blázquez-Sanz
%A Guy Casale
%A Juan Sebastián Díaz Arboleda
%T Differential Galois Theory and Isomonodromic Deformations
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a54/
%G en
%F SIGMA_2019_15_a54
David Blázquez-Sanz; Guy Casale; Juan Sebastián Díaz Arboleda. Differential Galois Theory and Isomonodromic Deformations. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a54/

[1] Arreche C. E., “On the computation of the parameterized differential Galois group for a second-order linear differential equation with differential parameters”, J. Symbolic Comput., 75 (2016), 25–55 | DOI | MR | Zbl

[2] Blázquez-Sanz D., Casale G., “Parallelisms Lie connections”, SIGMA, 13 (2017), 086, 28 pp., arXiv: 1603.07915 | DOI | MR | Zbl

[3] Cartier P., “Groupoïdes de {L}ie et leurs algébroïdes”, Astérisque, 326, no. 987, 2009, 165–196 | MR | Zbl

[4] Cassidy P. J., “The classification of the semisimple differential algebraic groups and the linear semisimple differential algebraic Lie algebras”, J. Algebra, 121 (1989), 169–238 | DOI | MR | Zbl

[5] Cassidy P. J., Singer M. F., “Galois theory of parameterized differential equations and linear differential algebraic groups”, Differential Equations and Quantum Groups, IRMA Lect. Math. Theor. Phys., 9, Eur. Math. Soc., Zürich, 2007, 113–155, arXiv: math.CA/0502396 | MR

[6] Davy D., Spécialisation du pseudo-groupe de Malgrange et irréductibilité, Ph.D. Thesis, Université Rennes 1, 2016

[7] Demazure M., Grothendieck A., Schémas en groupes. III: Structure des schémas en groupes réductifs, Lecture Notes in Math., 153, Springer-Verlag, Berlin–New York, 1970 | DOI | MR

[8] Dreyfus T., “A density theorem in parametrized differential Galois theory”, Pacific J. Math., 271 (2014), 87–141, arXiv: 1203.2904 | DOI | MR | Zbl

[9] Gillet H., Gorchinskiy S., Ovchinnikov A., “Parameterized Picard–Vessiot extensions and Atiyah extensions”, Adv. Math., 238 (2013), 322–411, arXiv: 1110.3526 | DOI | MR | Zbl

[10] Gómez-Mont X., “Integrals for holomorphic foliations with singularities having all leaves compact”, Ann. Inst. Fourier (Grenoble), 39 (1989), 451–458 | DOI | MR

[11] Gorchinskiy S., Ovchinnikov A., “Isomonodromic differential equations and differential categories”, J. Math. Pures Appl., 102 (2014), 48–78, arXiv: 1202.0927 | DOI | MR | Zbl

[12] Grauert H., “On meromorphic equivalence relations”, Contributions to Several Complex Variables, Aspects Math., E9, Friedr. Vieweg, Braunschweig, 1986, 115–147 | DOI | MR

[13] Hardouin C., Minchenko A., Ovchinnikov A., “Calculating differential Galois groups of parametrized differential equations, with applications to hypertranscendence”, Math. Ann., 368 (2017), 587–632, arXiv: 1505.07068 | DOI | MR | Zbl

[14] Iwasaki K., Kimura H., Shimomura S., Yoshida M., From Gauss to Painlevé: a modern theory of special functions, Aspects of Mathematics, E16, Friedr. Vieweg Sohn, Braunschweig, 1991 | DOI | MR

[15] Kiso K., “Local properties of intransitive infinite Lie algebra sheaves”, Japan. J. Math. (N.S.), 5 (1979), 101–155 | DOI | MR | Zbl

[16] Kolchin E. R., “Algebraic groups and algebraic dependence”, Amer. J. Math., 90 (1968), 1151–1164 | DOI | MR | Zbl

[17] Kolchin E. R., Differential algebra and algebraic groups, Pure and Applied Mathematics, 54, Academic Press, New York–London, 1973 | MR | Zbl

[18] Kolchin E. R., Differential algebraic groups, Pure and Applied Mathematics, 114, Academic Press, Inc., Orlando, FL, 1985 | MR | Zbl

[19] Landesman P., “Generalized differential Galois theory”, Trans. Amer. Math. Soc., 360 (2008), 4441–4495, arXiv: 0707.3583 | DOI | MR | Zbl

[20] León Sánchez O., Nagloo J., “On parameterized differential Galois extensions”, J. Pure Appl. Algebra, 220 (2016), 2549–2563, arXiv: 1507.06338 | DOI | MR | Zbl

[21] Malgrange B., “Le groupoïde de Galois d'un feuilletage”, Essays on Geometry and Related Topics, v. 1, 2, Monogr. Enseign. Math., 38, Enseignement Math., Geneva, 2001, 465–501 | MR | Zbl

[22] Malgrange B., “Differential algebraic groups”, Algebraic Approach to Differential Equations, World Sci. Publ., Hackensack, NJ, 2010, 292–312 | DOI | MR | Zbl

[23] Malgrange B., Pseudogroupes de Lie et théorie de Galois différentielle, Preprint IHES/M/10/11, Institut des Hautes études Scientifiques, 2010 http://preprints.ihes.fr/2010/M/M-10-11.pdf

[24] Minchenko A., Ovchinnikov A., Singer M. F., “Unipotent differential algebraic groups as parameterized differential Galois groups”, J. Inst. Math. Jussieu, 13 (2014), 671–700, arXiv: 1301.0092 | DOI | MR | Zbl

[25] Minchenko A., Ovchinnikov A., Singer M. F., “Reductive linear differential algebraic groups and the Galois groups of parameterized linear differential equations”, Int. Math. Res. Not., 2015 (2015), 1733–1793, arXiv: 1304.2693 | DOI | MR | Zbl

[26] Pillay A., “Algebraic $D$-groups and differential Galois theory”, Pacific J. Math., 216 (2004), 343–360 | DOI | MR | Zbl

[27] Wibmer M., “Existence of $\partial$-parameterized Picard–Vessiot extensions over fields with algebraically closed constants”, J. Algebra, 361 (2012), 163–171, arXiv: 1104.3514 | DOI | MR | Zbl