@article{SIGMA_2019_15_a53,
author = {Andrzej Borowiec and Danile Meljanac and Stjepan Meljanac and Anna Pacho{\l}},
title = {Interpolations between {Jordanian} {Twists} {Induced} by {Coboundary} {Twists}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a53/}
}
TY - JOUR AU - Andrzej Borowiec AU - Danile Meljanac AU - Stjepan Meljanac AU - Anna Pachoł TI - Interpolations between Jordanian Twists Induced by Coboundary Twists JO - Symmetry, integrability and geometry: methods and applications PY - 2019 VL - 15 UR - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a53/ LA - en ID - SIGMA_2019_15_a53 ER -
%0 Journal Article %A Andrzej Borowiec %A Danile Meljanac %A Stjepan Meljanac %A Anna Pachoł %T Interpolations between Jordanian Twists Induced by Coboundary Twists %J Symmetry, integrability and geometry: methods and applications %D 2019 %V 15 %U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a53/ %G en %F SIGMA_2019_15_a53
Andrzej Borowiec; Danile Meljanac; Stjepan Meljanac; Anna Pachoł. Interpolations between Jordanian Twists Induced by Coboundary Twists. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a53/
[1] Aschieri P., Borowiec A., Pachoł A., “Observables and dispersion relations in $\kappa$-Minkowski spacetime”, J. High Energy Phys., 2017:10 (2017), 152, 27 pp. | DOI | MR | Zbl
[2] Ballesteros A., Bruno N. R., Herranz F. J., “A non-commutative Minkowskian spacetime from a quantum AdS algebra”, Phys. Lett. B, 574 (2003), 276–282 | DOI | MR | Zbl
[3] Ballesteros A., Bruno N. R., Herranz F. J., “Quantum (anti)de Sitter algebras and generalizations of the $\kappa$-Minkowski space”, Symmetry Methods in Physics, eds. C. Burdik, O. Navratil, S. Pošta, Joint Institute for Nuclear Research, Dubna, 2008, 1–20, arXiv: hep-th/040929
[4] Borowiec A., Gupta K. S., Meljanac S., Pachoł A., “Constraints on the quantum gravity scale from $\kappa$-Minkowski spacetime”, Europhys. Lett., 92 (2010), 20006, 6 pp., arXiv: 0912.3299 | DOI
[5] Borowiec A., Jurić T., Meljanac S., Pachoł A., “Central tetrads and quantum spacetimes”, Int. J. Geom. Methods Mod. Phys., 13 (2016), 1640005, 18 pp., arXiv: 1602.01292 | DOI | MR | Zbl
[6] Borowiec A., Lukierski J., Tolstoy V. N., “Basic twist quantization of $\mathfrak{osp}(1|2)$ and $\kappa$-deformation of $D = 1$ superconformal mechanics”, Modern Phys. Lett. A, 18 (2003), 1157–1169, arXiv: hep-th/0301033 | DOI | MR | Zbl
[7] Borowiec A., Lukierski J., Tolstoy V. N., “Basic quantizations of $D=4$ Euclidean, Lorentz, Kleinian and quaternionic $\mathfrak{o}^\star(4)$ symmetries”, J. High Energy Phys., 2017:11 (2017), 187, 35 pp., arXiv: 1708.09848 | DOI | MR | Zbl
[8] Borowiec A., Pachoł A., “$\kappa$-Minkowski spacetime as the result of Jordanian twist deformation”, Phys. Rev. D, 79 (2009), 045012, 11 pp., arXiv: 0812.0576 | DOI
[9] Borowiec A., Pachoł A., “$\kappa$-{M}inkowski spacetimes and DSR algebras: fresh look and old problems”, SIGMA, 6 (2010), 086, 31 pp., arXiv: 1005.4429 | DOI | MR | Zbl
[10] Borowiec A., Pachoł A., “Twisted bialgebroids versus bialgebroids from a Drinfeld twist”, J. Phys. A: Math. Theor., 50 (2017), 055205, 17 pp., arXiv: 1603.09280 | DOI | MR | Zbl
[11] Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1994 | MR | Zbl
[12] Comtet L., Advanced combinatorics. The art of finite and infinite expansions, D. Reidel Publishing Co., Dordrecht, 1974 | DOI | MR | Zbl
[13] Dimitrijević M., Jonke L., Pachoł A., “Gauge theory on twisted $\kappa$-Minkowski: old problems and possible solutions”, SIGMA, 10 (2014), 063, 22 pp., arXiv: 1403.1857 | DOI | MR | Zbl
[14] Drinfeld V. G., “Hopf algebras and the quantum Yang–Baxter equation”, Soviet Math. Dokl., 32 (1985), 254–258 | MR
[15] Etingof P., Kazhdan D., “Quantization of Lie bialgebras. I”, Selecta Math. (N.S.), 2 (1996), 1–41, arXiv: q-alg/9506005 | DOI | MR | Zbl
[16] Etingof P., Schiffmann O., Lectures on quantum groups, Lectures in Mathematical Physics, 2nd ed., International Press, Somerville, MA, 2002 | MR | Zbl
[17] Fiore G., “On second quantization on noncommutative spaces with twisted symmetries”, J. Phys. A: Math. Theor., 43 (2010), 155401, 39 pp., arXiv: 0811.0773 | DOI | MR | Zbl
[18] Govindarajan T. R., Gupta K. S., Harikumar E., Meljanac S., Meljanac D., “Twisted statistics in $\kappa$-Minkowski spacetime”, Phys. Rev. D, 77 (2008), 105010, 6 pp., arXiv: 0802.1576 | DOI | MR
[19] Herranz F. J., “New quantum (anti)de {S}itter algebras and discrete symmetries”, Phys. Lett. B, 543 (2001), 89–97, arXiv: hep-ph/0205190 | DOI
[20] Hoare B., van Tongeren S. J., “On jordanian deformations of ${\rm AdS}_5$ and supergravity”, J. Phys. A: Math. Theor., 49 (2016), 434006, 22 pp., arXiv: 1605.03554 | DOI | MR | Zbl
[21] Jurić T., Kovačević D., Meljanac S., “$\kappa$-deformed phase space, Hopf algebroid and twisting”, SIGMA, 10 (2014), 106, 18 pp., arXiv: 1402.0397 | DOI | MR | Zbl
[22] Jurić T., Meljanac S., Pikutić D., “Realizations of $\kappa$-Minkowski space, Drinfeld twists and related symmetry algebras”, Eur. Phys. J. C Part. Fields, 75 (2015), 528, 16 pp., arXiv: 1506.04955 | DOI
[23] Jurić T., Meljanac S., Štrajn R., “$\kappa$-Poincaré–Hopf algebra and Hopf algebroid structure of phase space from twist”, Phys. Lett. A, 377 (2013), 2472–2476, arXiv: 1303.0994 | DOI | MR | Zbl
[24] Jurić T., Meljanac S., Štrajn R., “Twists, realizations and Hopf algebroid structure of $\kappa$-deformed phase space”, Internat. J. Modern Phys. A, 29 (2014), 1450022, 32 pp., arXiv: 1305.3088 | DOI | MR | Zbl
[25] Kawaguchi I., Matsumoto T., Yoshida K., “Jordanian deformations of the ${\rm AdS}_5 \times {\rm S}_5$ superstring”, J. High Energy Phys., 2014:4 (2014), 153, 20 pp., arXiv: 1401.4855 | DOI | MR
[26] Kawaguchi I., Matsumoto T., Yoshida K., “A Jordanian deformation of AdS space in type IIB supergravity”, J. High Energy Phys., 2014:6 (2014), 146, 26 pp., arXiv: 1402.6147 | DOI | MR | Zbl
[27] Kovačević D., Meljanac S., “Kappa-Minkowski spacetime, kappa-Poincaré Hopf algebra and realizations”, J. Phys. A: Math. Theor., 45 (2012), 135208, 24 pp., arXiv: 1110.0944 | DOI | MR | Zbl
[28] Kovačević D., Meljanac S., Pachoł A., Štrajn R., “Generalized Poincaré algebras, Hopf algebras and $\kappa$-Minkowski spacetime”, Phys. Lett. B, 711 (2012), 122–127, arXiv: 1202.3305 | DOI | MR
[29] Kovačević D., Meljanac S., Samsarov A., Škoda Z., “Hermitian realizations of $\kappa$-Minkowski space-time”, Int. J. Geom. Methods Mod. Phys., 30 (2015), 1550019, 26 pp., arXiv: 1307.5772 | DOI | MR | Zbl
[30] Lukierski J., Nowicki A., Ruegg H., “New quantum Poincaré algebra and $\kappa$-deformed field theory”, Phys. Lett. B, 293 (1992), 344–352 | DOI | MR | Zbl
[31] Lukierski J., Ruegg H., Nowicki A., Tolstoy V. N., “$q$-deformation of Poincaré algebra”, Phys. Lett. B, 264 (1991), 331–338 | DOI | MR
[32] Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl
[33] Mansour T., Schork M., Commutation relations, normal ordering, and Stirling numbers, Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, 2016 | MR | Zbl
[34] Matsumoto T., Yoshida K., “Lunin–Maldacena backgrounds from the classical Yang–Baxter equation – towards the gravity/CYBE correspondence”, J. High Energy Phys., 2014:6 (2014), 135, 16 pp., arXiv: 1404.1838 | DOI | MR | Zbl
[35] Matsumoto T., Yoshida K., “Yang–Baxter deformations and string dualities”, J. High Energy Phys., 2015:3 (2015), 137, 21 pp., arXiv: 1412.3658 | DOI | MR
[36] Meljanac D., Meljanac S., Mignemi S., Štrajn R., “$\kappa$-deformed phase spaces, Jordanian twists, Lorentz–Weyl algebra and dispersion relations”, Phys. Rev. D, 99 (2019), 126012, 12 pp., arXiv: 1903.08679 | DOI
[37] Meljanac D., Meljanac S., Pikutić D., “Families of vector-like deformations of relativistic quantum phase spaces, twists and symmetries”, Eur. Phys. J. C Part. Fields, 77 (2017), 830, 12 pp., arXiv: 1709.04745 | DOI
[38] Meljanac S., Krešić-Jurić S., “Differential structure on $\kappa$-Minkowski space, and $\kappa$-Poincaré algebra”, Internat. J. Modern Phys. A, 26 (2011), 3385–3402, arXiv: 1004.4647 | DOI | MR | Zbl
[39] Meljanac S., Krešić-Jurić S., Stojić M., “Covariant realizations of kappa-deformed space”, Eur. Phys. J. C Part. Fields, 51 (2007), 229–240, arXiv: hep-th/0702215 | DOI | MR | Zbl
[40] Meljanac S., Meljanac D., Mercati F., Pikutić D., “Noncommutative spaces and Poincaré symmetry”, Phys. Lett. B, 766 (2017), 181–185, arXiv: 1610.06716 | DOI | Zbl
[41] Meljanac S., Meljanac D., Pachoł A., Pikutić D., “Remarks on simple interpolation between Jordanian twists”, J. Phys. A: Math. Theor., 50 (2017), 265201, 11 pp., arXiv: 1612.07984 | DOI | MR | Zbl
[42] Meljanac S., Meljanac D., Samsarov A., Stojić M., Lie algebraic deformations of Minkowski space with Poincaré algebra, arXiv: 0909.1706
[43] Meljanac S., Meljanac D., Samsarov A., Stojić M., “$\kappa$-deformed Snyder spacetime”, Modern Phys. Lett. A, 25 (2010), 579–590, arXiv: 0912.5087 | DOI | MR | Zbl
[44] Meljanac S., Meljanac D., Samsarov A., Stojić M., “Kappa Snyder deformations of Minkowski spacetime, realizations and Hopf algebra”, Phys. Rev. D, 83 (2011), 065009, 16 pp., arXiv: 1102.1655 | DOI | MR
[45] Meljanac S., Pachoł A., Pikutić D., “Twisted conformal algebra related to $\kappa$-Minkowski space”, Phys. Rev. D, 92 (2015), 105015, 8 pp., arXiv: 1509.02115 | DOI | MR
[46] Meljanac S., Samsarov A., Stojić M., Gupta K. S., “$\kappa$-Minkowski spacetime and the star product realizations”, Eur. Phys. J. C Part. Fields, 53 (2008), 295–309, arXiv: 0705.2471 | DOI | MR | Zbl
[47] Meljanac S., Stojić M., “New realizations of Lie algebra kappa-deformed Euclidean space”, Eur. Phys. J. C Part. Fields, 47 (2006), 531–539, arXiv: hep-th/0605133 | DOI | MR | Zbl
[48] Meljanac S., Škoda Z., Svrtan D., “Exponential formulas and {L}ie algebra type star products”, SIGMA, 8 (2012), 013, 15 pp., arXiv: 1006.0478 | DOI | MR | Zbl
[49] Ogievetsky O., “Hopf structures on the Borel subalgebra of $\mathfrak{sl}(2)$”, Rend. Circ. Mat. Palermo (2) Suppl., 1994, 185–199 | MR | Zbl
[50] Pachoł A., Vitale P., “$\kappa$-Minkowski star product in any dimension from symplectic realization”, J. Phys. A: Math. Theor., 48 (2015), 445202, 16 pp., arXiv: 1507.03523 | DOI | MR | Zbl
[51] Tolstoy V. N., Chains of extended Jordanian twists for Lie superalgebras, arXiv: math.QA/0402433
[52] Tolstoy V. N., Quantum deformations of relativistic symmetries, arXiv: 0704.0081
[53] Tolstoy V. N., “Multiparameter quantum deformations of Jordanian type for Lie superalgebras”, Differential Geometry and Physics, Nankai Tracts in Mathematics, 10, World Sci. Publ., Hackensack, NJ, 2008, 443–452, arXiv: math.QA/0701079 | DOI | MR
[54] Tolstoy V. N., “Twisted quantum deformations of Lorentz and Poincaré algebras”, Bulg. J. Phys., 2008, suppl. 1, 441–459, arXiv: 0712.3962 | Zbl
[55] van Tongeren S. J., “Yang–Baxter deformations, AdS/CFT, and twist-noncommutative gauge theory”, Nuclear Phys. B, 904 (2016), 148–175, arXiv: 1506.01023 | DOI | MR | Zbl