Mots-clés : Lie algebras, orthogonal polynomials.
@article{SIGMA_2019_15_a52,
author = {Gioia Carinci and Chiara Franceschini and Cristian Giardin\`a and Wolter Groenevelt and Frank Redig},
title = {Orthogonal {Dualities} of {Markov} {Processes} and {Unitary} {Symmetries}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a52/}
}
TY - JOUR AU - Gioia Carinci AU - Chiara Franceschini AU - Cristian Giardinà AU - Wolter Groenevelt AU - Frank Redig TI - Orthogonal Dualities of Markov Processes and Unitary Symmetries JO - Symmetry, integrability and geometry: methods and applications PY - 2019 VL - 15 UR - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a52/ LA - en ID - SIGMA_2019_15_a52 ER -
%0 Journal Article %A Gioia Carinci %A Chiara Franceschini %A Cristian Giardinà %A Wolter Groenevelt %A Frank Redig %T Orthogonal Dualities of Markov Processes and Unitary Symmetries %J Symmetry, integrability and geometry: methods and applications %D 2019 %V 15 %U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a52/ %G en %F SIGMA_2019_15_a52
Gioia Carinci; Chiara Franceschini; Cristian Giardinà; Wolter Groenevelt; Frank Redig. Orthogonal Dualities of Markov Processes and Unitary Symmetries. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a52/
[1] Ayala M., Carinci G., Redig F., “Quantitative Boltzmann–Gibbs principles via orthogonal polynomial duality”, J. Stat. Phys., 171 (2018), 980–999, arXiv: 1712.08492 | DOI | MR | Zbl
[2] Borodin A., Corwin I., Gorin V., “Stochastic six-vertex model”, Duke Math. J., 165 (2016), 563–624, arXiv: 1407.6729 | DOI | MR | Zbl
[3] Borodin A., Corwin I., Sasamoto T., “From duality to determinants for $q$-TASEP and ASEP”, Ann. Probab., 42 (2014), 2314–2382, arXiv: 1207.5035 | DOI | MR | Zbl
[4] Carinci G., Giardinà C., Giberti C., Redig F., “Duality for stochastic models of transport”, J. Stat. Phys., 152 (2013), 657–697, arXiv: 1212.3154 | DOI | MR | Zbl
[5] Carinci G., Giardinà C., Giberti C., Redig F., “Dualities in population genetics: a fresh look with new dualities”, Stochastic Process. Appl., 125 (2015), 941–969, arXiv: 1302.3206 | DOI | MR | Zbl
[6] Carinci G., Giardinà C., Redig F., Sasamoto T., “Asymmetric stochastic transport models with $\mathcal{U}_q(\mathfrak{su}(1,1))$ symmetry”, J. Stat. Phys., 163 (2016), 239–279, arXiv: 1507.01478 | DOI | MR | Zbl
[7] Carinci G., Giardinà C., Redig F., Sasamoto T., “A generalized asymmetric exclusion process with $U_q(\mathfrak{sl}_2)$ stochastic duality”, Probab. Theory Related Fields, 166 (2016), 887–933, arXiv: 1407.3367 | DOI | MR | Zbl
[8] Corwin I., Ghosal P., Shen H., Tsai L.-C., Stochastic PDE limit of the six vertex model, arXiv: 1803.08120
[9] Corwin I., Petrov L., “Stochastic higher spin vertex models on the line”, Comm. Math. Phys., 343 (2016), 651–700, arXiv: 1502.07374 | DOI | MR | Zbl
[10] Corwin I., Shen H., Tsai L.-C., “${\rm ASEP}(q,j)$ converges to the KPZ equation”, Ann. Inst. Henri Poincaré Probab. Stat., 54 (2018), 995–1012, arXiv: 1602.01908 | DOI | MR | Zbl
[11] De Masi A., Presutti E., Mathematical methods for hydrodynamic limits, Lecture Notes in Mathematics, 1501, Springer-Verlag, Berlin, 1991 | DOI | MR | Zbl
[12] Franceschini C., Giardinà C., Stochastic duality and orthogonal polynomials, arXiv: 1701.09115
[13] Franceschini C., Giardinà C., Groenevelt W., “Self-duality of Markov processes and intertwining functions”, Math. Phys. Anal. Geom., 21 (2018), 29, 21 pp., arXiv: 1801.09433 | DOI | MR | Zbl
[14] Giardinà C., Kurchan J., Redig F., “Duality and exact correlations for a model of heat conduction”, J. Math. Phys., 48 (2007), 033301, 15 pp., arXiv: cond-mat/0612198 | DOI | MR | Zbl
[15] Giardinà C., Kurchan J., Redig F., Vafayi K., “Duality and hidden symmetries in interacting particle systems”, J. Stat. Phys., 135 (2009), 25–55, arXiv: 0810.1202 | DOI | MR | Zbl
[16] Giardinà C., Redig F., Vafayi K., “Correlation inequalities for interacting particle systems with duality”, J. Stat. Phys., 141 (2010), 242–263, arXiv: 0906.4664 | DOI | MR | Zbl
[17] Groenevelt W., “Orthogonal stochastic duality functions from Lie algebra representations”, J. Stat. Phys., 174 (2019), 97–119, arXiv: 1709.05997 | DOI | MR | Zbl
[18] Imamura T., Sasamoto T., “Current moments of 1D ASEP by duality”, J. Stat. Phys., 142 (2011), 919–930, arXiv: 1011.4588 | DOI | MR | Zbl
[19] Jansen S., Kurt N., “On the notion(s) of duality for Markov processes”, Probab. Surv., 11 (2014), 59–120, arXiv: 1210.7193 | DOI | MR | Zbl
[20] Kipnis C., Marchioro C., Presutti E., “Heat flow in an exactly solvable model”, J. Stat. Phys., 27 (1982), 65–74 | DOI | MR
[21] Koekoek R., Lesky P. A., Swarttouw R. F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl
[22] Kuan J., “An algebraic construction of duality functions for the stochastic $\mathcal{U}_q\big( A_n^{(1)}\big)$ vertex model and its degenerations”, Comm. Math. Phys., 359 (2018), 121–187, arXiv: 1701.04468 | DOI | MR | Zbl
[23] Liggett T. M., Interacting particle systems, Classics in Mathematics, Springer-Verlag, Berlin, 2005 | DOI | MR | Zbl
[24] Möhle M., “The concept of duality and applications to Markov processes arising in neutral population genetics models”, Bernoulli, 5 (1999), 761–777 | DOI | MR | Zbl
[25] Ohkubo J., “On dualities for SSEP and ASEP with open boundary conditions”, J. Phys. A: Math. Theor., 50 (2017), 095004, 21 pp., arXiv: 1606.05447 | DOI | MR | Zbl
[26] Redig F., Sau F., “Factorized duality, stationary product measures and generating functions”, J. Stat. Phys., 172 (2018), 980–1008, arXiv: 1702.07237 | DOI | MR | Zbl
[27] Rosengren H., “A new quantum algebraic interpretation of the Askey–Wilson polynomials”, $q$-Series from a Contemporary Perspective (South Hadley, MA, 1998), Contemp. Math., 254, Amer. Math. Soc., Providence, RI, 2000, 371–394 | DOI | MR | Zbl
[28] Schütz G. M., “Duality relations for asymmetric exclusion processes”, J. Stat. Phys., 86 (1997), 1265–1287 | DOI | MR | Zbl
[29] Schütz G. M., Sandow S., “Non-Abelian symmetries of stochastic processes: Derivation of correlation functions for random-vertex models and disordered-interacting-particle systems”, Phys. Rev. E, 49 (1994), 2726–2741 | DOI
[30] Spitzer F., “Interaction of Markov processes”, Adv. Math., 5 (1970), 246–290 | DOI | MR | Zbl
[31] Spohn H., “Long range correlations for stochastic lattice gases in a nonequilibrium steady state”, J. Phys. A: Math. Gen., 16 (1983), 4275–4291 | DOI | MR
[32] Truax D. R., “Baker–Campbell–Hausdorff relations and unitarity of ${\rm SU}(2)$ and ${\rm SU}(1,1)$ squeeze operators”, Phys. Rev. D, 31 (1985), 1988–1991 | DOI | MR