BPS Spectra, Barcodes and Walls
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

BPS spectra give important insights into the non-perturbative regimes of supersymmetric theories. Often from the study of BPS states one can infer properties of the geometrical or algebraic structures underlying such theories. In this paper we approach this problem from the perspective of persistent homology. Persistent homology is at the base of topological data analysis, which aims at extracting topological features out of a set of points. We use these techniques to investigate the topological properties which characterize the spectra of several supersymmetric models in field and string theory. We discuss how such features change upon crossing walls of marginal stability in a few examples. Then we look at the topological properties of the distributions of BPS invariants in string compactifications on compact threefolds, used to engineer black hole microstates. Finally we discuss the interplay between persistent homology and modularity by considering certain number theoretical functions used to count dyons in string compactifications and by studying equivariant elliptic genera in the context of the Mathieu moonshine.
Keywords: string theory, supersymmetry, BPS states, persistent homology.
@article{SIGMA_2019_15_a51,
     author = {Michele Cirafici},
     title = {BPS {Spectra,} {Barcodes} and {Walls}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a51/}
}
TY  - JOUR
AU  - Michele Cirafici
TI  - BPS Spectra, Barcodes and Walls
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a51/
LA  - en
ID  - SIGMA_2019_15_a51
ER  - 
%0 Journal Article
%A Michele Cirafici
%T BPS Spectra, Barcodes and Walls
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a51/
%G en
%F SIGMA_2019_15_a51
Michele Cirafici. BPS Spectra, Barcodes and Walls. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a51/

[1] Alim M., Cecotti S., Córdova C., Espahbodi S., Rastogi A., Vafa C., “$\mathcal{N}=2$ quantum field theories and their BPS quivers”, Adv. Theor. Math. Phys., 18 (2014), 27–127, arXiv: 1112.3984 | DOI | MR | Zbl

[2] Andriyash E., Denef F., Jafferis D. L., Moore G. W., “Bound state transformation walls”, J. High Energy Phys., 2012:3 (2012), 007, 65 pp., arXiv: 1008.3555 | DOI | MR | Zbl

[3] Binchi J., Merelli E., Rucco M., Petri G., Vaccarino F., “jHoles: a tool for understanding biological complex networks via clique weight rank persistent homology”, Proceedings of the 5th International Workshop on Interactions between Computer Science and Biology, CS2Bio'14, Electron. Notes Theor. Comput. Sci., 306, Elsevier Sci. B.V., Amsterdam, 2014, 5–18 | DOI | MR | Zbl

[4] Carlsson G., “Topology and data”, Bull. Amer. Math. Soc. (N.S.), 46 (2009), 255–308 | DOI | MR | Zbl

[5] Carlsson G., Ishkhanov T., de Silva V., Zomorodian A., “On the local behavior of spaces of natural images”, Int. J. Comput. Vis., 76 (2008), 1–12 | DOI | MR

[6] Cecotti S., Del Zotto M., “$Y$-systems, $Q$-systems, and 4D $\mathcal{N}=2$ supersymmetric QFT”, J. Phys. A: Math. Theor., 47 (2014), 474001, 40 pp., arXiv: 1403.7613 | DOI | MR | Zbl

[7] Chan J. M., Carlsson G., Rabadan R., “Topology of viral evolution”, Proc. Natl. Acad. Sci. USA, 110 (2013), 18566–18571 | DOI | MR | Zbl

[8] Cheng M. C. N., “$K3$ surfaces, ${\mathcal N}=4$ dyons and the Mathieu group $M_{24}$”, Commun. Number Theory Phys., 4 (2010), 623–657, arXiv: 1005.5415 | DOI | MR | Zbl

[9] Cheng M. C. N., Duncan J. F. R., “The largest Mathieu group and (mock) automorphic forms”, String-Math 2011, Proc. Sympos. Pure Math., 85, Amer. Math. Soc., Providence, RI, 2012, 53–82, arXiv: 1201.4140 | DOI | MR

[10] Cirafici M., “Defects in cohomological gauge theory and Donaldson–Thomas invariants”, Adv. Theor. Math. Phys., 20 (2016), 945–1006, arXiv: 1302.7297 | DOI | MR | Zbl

[11] Cirafici M., “Persistent homology and string vacua”, J. High Energy Phys., 2016:3 (2016), 045, 34 pp., arXiv: 1512.01170 | DOI

[12] Cirafici M., “On framed quivers, BPS invariants and defects”, Confluentes Math., 9 (2017), 71–99, arXiv: 1801.03778 | DOI | MR | Zbl

[13] Cirafici M., “Quivers, line defects and framed BPS invariants”, Ann. Henri Poincaré, 19 (2018), 1–70, arXiv: 1307.7134 | DOI | MR | Zbl

[14] Cirafici M., MATLAB programs and the accompanying datasets, https://cirafici.dmg.units.it/BPSbarcodesFiles/

[15] Cirafici M., Sinkovics A., Szabo R. J., “Cohomological gauge theory, quiver matrix models and Donaldson–Thomas theory”, Nuclear Phys. B, 809 (2009), 452–518, arXiv: 0803.4188 | DOI | MR | Zbl

[16] Cirafici M., Sinkovics A., Szabo R. J., “Instantons, quivers and noncommutative Donaldson–Thomas theory”, Nuclear Phys. B, 853 (2011), 508–605, arXiv: 1012.2725 | DOI | MR | Zbl

[17] Cirafici M., Szabo R. J., “Curve counting, instantons and McKay correspondences”, J. Geom. Phys., 72 (2013), 54–109, arXiv: 1209.1486 | DOI | MR | Zbl

[18] Dabholkar A., Denef F., Moore G. W., Pioline B., “Precision counting of small black holes”, J. High Energy Phys., 2005:10 (2005), 096, 90 pp., arXiv: hep-th/0507014 | DOI | MR

[19] Dabholkar A., Murthy S., Zagier D., Quantum black holes, wall crossing, and mock modular forms, arXiv: 1208.4074

[20] Denef F., Douglas M. R., “Distributions of flux vacua”, J. High Energy Phys., 2004:5 (2004), 072, 46 pp., arXiv: hep-th/0404116 | DOI | MR

[21] Denef F., Moore G. W., “Split states, entropy enigmas, holes and halos”, J. High Energy Phys., 2011:11 (2011), 129, 153 pp., arXiv: hep-th/0702146 | DOI | MR | Zbl

[22] Dijkgraaf R., Verlinde E., Verlinde H., “Counting dyons in $N=4$ string theory”, Nuclear Phys. B, 484 (1997), 543–561, arXiv: hep-th/9607026 | DOI | MR | Zbl

[23] Duncan J. F.R., Griffin M. J., Ono K., “Moonshine”, Res. Math. Sci., 2 (2015), 11, 57 pp., arXiv: 1411.6571 | DOI | MR | Zbl

[24] Edelsbrunner H., Harer J., “Persistent homology – a survey”, Surveys on Discrete and Computational Geometry, Contemp. Math., 453, Amer. Math. Soc., Providence, RI, 2008, 257–282 | DOI | MR | Zbl

[25] Edelsbrunner H., Letscher D., Zomorodian A., “Topological persistence and simplification”, Discrete Comput. Geom., 28 (2002), 511–533 | DOI | MR | Zbl

[26] Eguchi T., Hikami K., “Note on twisted elliptic genus of $K3$ surface”, Phys. Lett. B, 694 (2011), 446–455, arXiv: 1008.4924 | DOI | MR

[27] Eguchi T., Ooguri H., Tachikawa Y., “Notes on the $K3$ surface and the Mathieu group $M_{24}$”, Exp. Math., 20 (2011), 91–96, arXiv: 1004.0956 | DOI | MR | Zbl

[28] Gaberdiel M. R., Hohenegger S., Volpato R., “Mathieu Moonshine in the elliptic genus of $K3$”, J. High Energy Phys., 2010:10 (2010), 062, 24 pp., arXiv: 1008.3778 | DOI | MR | Zbl

[29] Gaberdiel M. R., Hohenegger S., Volpato R., “Mathieu twining characters for $K3$”, J. High Energy Phys., 2010:9 (2010), 058, 20 pp., arXiv: 1006.0221 | DOI | MR | Zbl

[30] Gaberdiel M. R., Volpato R., “Mathieu moonshine and orbifold K3s”, Conformal Field Theory, Automorphic Forms and Related Topics, Contrib. Math. Comput. Sci., 8, Springer, Heidelberg, 2014, 109–141, arXiv: 1206.5143 | DOI | MR | Zbl

[31] Gaiotto D., Moore G. W., Neitzke A., “Four-dimensional wall-crossing via three-dimensional field theory”, Comm. Math. Phys., 299 (2010), 163–224, arXiv: 0807.4723 | DOI | MR | Zbl

[32] Gaiotto D., Moore G. W., Neitzke A., “Framed BPS states”, Adv. Theor. Math. Phys., 17 (2013), 241–397, arXiv: 1006.0146 | DOI | MR | Zbl

[33] Gaiotto D., Moore G. W., Neitzke A., “Wall-crossing, Hitchin systems, and the WKB approximation”, Adv. Math., 234 (2013), 239–403, arXiv: 0907.3987 | DOI | MR | Zbl

[34] Galakhov D., Longhi P., Mainiero T., Moore G. W., Neitzke A., “Wild wall crossing and BPS giants”, J. High Energy Phys., 2013:11 (2013), 046, 101 pp., arXiv: 1305.5454 | DOI

[35] Ghrist R., Elementary applied topology, ed. 1.0, Createspace, 2014

[36] Gopakumar R., Vafa C., M-theory and topological strings. I, arXiv: hep-th/9809187

[37] Gopakumar R., Vafa C., M-theory and topological strings. II, arXiv: hep-th/9812127

[38] Huang M.-X., Klemm A., Mariño M., Tavanfar A., “Black holes and large order quantum geometry”, Phys. Rev. D, 79 (2009), 066001, 22 pp., arXiv: 0704.2440 | DOI | MR

[39] Huang M.-X., Klemm A., Quackenbush S., “Topological string theory on compact Calabi–Yau: modularity and boundary conditions”, Homological Mirror Symmetry, Lecture Notes in Phys., 757, Springer, Berlin, 2009, 45–102, arXiv: hep-th/0612125 | DOI | MR | Zbl

[40] Iqbal A., Vafa C., Nekrasov N., Okounkov A., “Quantum foam and topological strings”, J. High Energy Phys., 2008:4 (2008), 011, 47 pp., arXiv: hep-th/0312022 | DOI | MR | Zbl

[41] Jafferis D. L., Moore G. W., Wall crossing in local Calabi Yau manifolds, arXiv: 0810.4909

[42] Joyce D., Song Y., A theory of generalized Donaldson–Thomas invariants, Mem. Amer. Math. Soc., 217, 2012, iv+199 pp., arXiv: 0810.5645 | DOI | MR

[43] Katz S., Klemm A., Vafa C., “M-theory, topological strings and spinning black holes”, Adv. Theor. Math. Phys., 3 (1999), 1445–1537, arXiv: hep-th/9910181 | DOI | MR | Zbl

[44] Kontsevich M., Soibelman Y., Stability structures, motivic Donaldson–Thomas invariants and cluster transformations, arXiv: 0811.2435 | MR

[45] Kontsevich M., Soibelman Y., “Wall-crossing structures in Donaldson–Thomas invariants, integrable systems and mirror symmetry”, Homological Mirror Symmetry and Tropical Geometry, Lect. Notes Unione Mat. Ital., 15, Springer, Cham, 2014, 197–308, arXiv: 1303.3253 | DOI | MR | Zbl

[46] Lopes Cardoso G., Cirafici M., Jorge R., Nampuri S., “Indefinite theta functions and black hole partition functions”, J. High Energy Phys., 2014:2 (2014), 019, 36 pp., arXiv: 1309.4428 | DOI | MR | Zbl

[47] Lopes Cardoso G., Cirafici M., Nampuri S., “Indefinite theta functions for counting attractor backgrounds”, J. High Energy Phys., 2014:10 (2014), 017, 25 pp., arXiv: 1407.0197 | DOI | MR | Zbl

[48] Lopes Cardoso G., de Wit B., Käppeli J., Mohaupt T., “Asymptotic degeneracy of dyonic $N=4$ string states and black hole entropy”, J. High Energy Phys., 2004:12 (2004), 075, 16 pp., arXiv: hep-th/0412287 | DOI

[49] Lopes Cardoso G., de Wit B., Käppeli J., Mohaupt T., “Black hole partition functions and duality”, J. High Energy Phys., 2006:3 (2006), 074, 37 pp., arXiv: hep-th/0601108 | DOI | MR | Zbl

[50] Lopes Cardoso G., de Wit B., Mahapatra S., “Deformations of special geometry: in search of the topological string”, J. High Energy Phys., 2014 (2014), 096, 46 pp., arXiv: 1406.5478 | DOI | MR

[51] Lopes Cardoso G., de Wit B., Mohaupt T., “Corrections to macroscopic supersymmetric black-hole entropy”, Phys. Lett. B, 451 (1999), 309–316, arXiv: hep-th/9812082 | DOI | MR | Zbl

[52] Manschot J., Pioline B., Sen A., “Wall crossing from {B}oltzmann black hole halos”, J. High Energy Phys., 2011:7 (2011), 059, 73 pp., arXiv: 1011.1258 | DOI | MR | Zbl

[53] Moore G. W., Arithmetic and attractors, arXiv: hep-th/9807087

[54] Moore G. W., Lecture notes for Felix Klein lectures, } {http://www.physics.rutgers.edu/g̃moore/FelixKleinLectureNotes.pdf

[55] Nagao K., Nakajima H., “Counting invariant of perverse coherent sheaves and its wall-crossing”, Int. Math. Res. Not., 2011 (2011), 3885–3938, arXiv: 0809.2992 | DOI | MR | Zbl

[56] Nicolau M., Levine A. J., Carlsson G., “Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival”, Proc. Natl. Acad. Sci. USA, 108 (2011), 7265–7270 | DOI

[57] Ooguri H., Strominger A., Vafa C., “Black hole attractors and the topological string”, Phys. Rev. D, 70 (2004), 106007, 13 pp., arXiv: hep-th/0405146 | DOI | MR

[58] Port A., Gheorghita I., Guth D., Clark J. M., Liang C., Dasu S., Marcolli M., “Persistent topology of syntax”, Math. Comput. Sci., 12 (2018), 33–50, arXiv: 1507.05134 | DOI | MR | Zbl

[59] Seiberg N., Witten E., “Electric-magnetic duality, monopole condensation, and confinement in $N=2$ supersymmetric Yang–Mills theory”, Nuclear Phys. B, 426 (1994), 19–52 | DOI | MR | Zbl

[60] Seiberg N., Witten E., “Gauge dynamics and compactification to three dimensions”, The Mathematical Beauty of Physics (Saclay, 1996), Adv. Ser. Math. Phys., 24, World Sci. Publ., River Edge, NJ, 1997, 333–366, arXiv: hep-th/9607163 | MR | Zbl

[61] Shih D., Yin X., “Exact black hole degeneracies and the topological string”, J. High Energy Phys., 2006:4 (2006), 034, 19 pp., arXiv: hep-th/0508174 | DOI | MR

[62] Strominger A., Vafa C., “Microscopic origin of the Bekenstein–Hawking entropy”, Phys. Lett. B, 379 (1996), 99–104, arXiv: hep-th/9601029 | DOI | MR | Zbl

[63] Szendrői B., “Non-commutative Donaldson–Thomas invariants and the conifold”, Geom. Topol., 12 (2008), 1171–1202, arXiv: 0705.3419 | DOI | MR | Zbl

[64] Tausz A., Vejdemo-Johansson M., Adams H., “JavaPlex: a research software package for persistent (co)homology”, Mathematical Software – ICMS 2014, Lecture Notes in Computer Sci., 8592, eds. H. Hong, C. Yap, Springer, Berlin–Heidelberg, 2008, 129–136 http://appliedtopology.github.io/javaplex/ | DOI

[65] Witten E., “Supersymmetry and Morse theory”, J. Differential Geom., 17 (1982), 661–692 | DOI | MR | Zbl

[66] Zomorodian A., Carlsson G., “Computing persistent homology”, Discrete Comput. Geom., 33 (2005), 249–274 | DOI | MR | Zbl